Modern Analysis II

Victor Ortega
Columbia University

October 28, 2025


mailto:vincictor33@gmail.com

Contents

1 Power Series

1.1 Preamble . . . . . . . . e e
1.2 Series of Functions . . . . . . . . . . . e
1.3 Power Series. . . . . . . . . e e e
1.4 Real-Analytic Functions . . . . . . . .. ... L o
1.5 Abel’s Theorem . . . . . . . . . . . e
1.6 logand exp . . . . . . . e
1.7 Complex Analysis . . . . . . . . L
2 Differentiation on R” — R™
2.1 Derivativeson R . . . . . . . .
2.2 Derivatives on R™ . . . . . . . .
2.3 The Chain Rule . . . . . . . . . . . . . . e
2.4 Clairaut Theorem . . . . . . . . . . . . . . . oo
2.5 Inverse Function . . . . . . . . . . . . ..
2.6 Implicit Function . . . . . . . . .. Lo
2.7 Lagrange Multiplier . . . . . . . . .. . .. L e

3 Measure Theory
3.1 Preliminaries . . . . . . . .. e

TN NN



Chapter 1

Power Series

1.1 Preamble

These are notes from the Fall 2025 Intro to Modern Analysis II class from Dr. Jeanne Boursier
at Columbia University. The textbook for this course was Analysis II by Terence Tao.

1.2 Series of Functions

Definition 1.1 (Metric Space). Let X be a non-empty set. Let d : X x X - R:U:0 be a
function. We say that d is a metric or distance on X < d satisfies the following properties

(d1) Vz,y e X = d(z,y) =0
(d2) d(z,y) =0 z=y
(d3) Yo,y € X = d(z,y) = d(y, z)
(dy) Va,y,2 € X = d(x, z) < d(z,y) + d(y, 2)
A metric space is an ordered pair (X, d) where X is non-empty and d is a metric on X.
Definition 1.2. Let (X, d) be a metric space, © € X, and r € RT. The open ball of center
x and radius r is defined as

B(x,r) ={y € X | d(z,y) <r}
The closed ball of center x and radius r is defined as

Blz,r] ={y € X [ d(z,y) <7}
Definition 1.3. Let (X,d) be a metric space and A C X. A point z € X is called an
adherent point of A if for every € > 0 = the open ball B(z,¢) intersects A.

B(z,e) N A4 @

Definition 1.4. Let (X, d) and (Y, p) be metric spaces = the set of continuous functions of
X in Y is defined as

Co(X,Y)={f: X = Y| fis continuous }



https://sites.google.com/view/jboursier/accueil

1.2. SERIES OF FUNCTIONS CHAPTER 1. POWER SERIES

Notation. In this text, we adopt the following convention for arrows

= is the colloquial word then = is the formal logical implies

Definition 1.5 (Limiting Value). Let (X, d) and (Y, p) be metric spaces. Let E C X, and let
f:E —Y be a function. If zy € X is an adherent point of E and L € Y we say

lim f(z)=L

z € E—xo

and say f(z) converges to L in Y as x converges to zo in F if

Ve>030>0Ve e E= 0<d(x,z) <= p(f(z),L)<e

Intuition. We are working our way to limits of sequences of functions to explore the concept of
power series. We will now define two notions of convergence: uniform and pointwise.

Definition 1.6 (Uniform Convergence). Let X be a non-empty set and (Y, p) a metric space.
We say that a sequence of functions

(fo: X > Y |neN) or (fn: X =Y),cn
converges uniformly to a function f: X - Y <

Ve>03dNeNVn>2NVzeX = p(fu(z), flx)) <e
Notation. In this case we write f, = f, where f is the uniform limit of the sequence.

Definition 1.7 (Pointwise Convergence). Let X be any non-empty set and (Y, p) a metric
space. We say that a sequence of functions
(fn: X =Y |neN) or (fn: X =Y), oy

converges pointwise to the function f: X - Y & Ve e X =

lim f,(z) = f(z)

n—oo

in the space (Y, p)
Notation. We say f, — f, where f is the pointwise limit of the sequence (fy), oy

Definition 1.8 (Series). Let (X, d) be a metric space. Let (f,,)22; be a sequence of functions
fn: X >R, and let f: X — R. If the partial sums

Sw(@) = fu(2)

k=1

converge pointwise to f(x) as N — oo, we say that the series

converges pointwise on X to f. For converging uniformly it is very similar.
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Definition 1.9. Let > f,, be a series of functions defined on a set A C R. It is said to be
absolutely convergent if for every x € A, the series > | f,, ()| converges.

Remark. If " f,, converges absolutely = >_ f,, converges,

Theorem 1.1. Let f,, be differentiable. Suppose 3z, s.t. f,(xg) converges and f; = g =
fn — [ differentiable with [/ =g

Theorem 1.2 (Weierstrass M-test). Let (X, d) be a metric space. Let (f,)52; be a sequence
of bounded continuous functions f, : X — R such that

e
S Ialloo < 00
n=1

= ZZO=1 fn converges uniformly to a function f: X — R, and f is continuous on X

Proof. Fix € X. Note that

| fn(2)] < sup
yeX

Hence ) ’ fn(x)’ converges = Y f,,(z) converges pointwise

9] N
F@) =) fale) =|f(2) = Y fule)
n=0 n=0

=1 Y. fa@|< D0 Il
n=N+1 n=N+1
Which implies
F=Y fa < D lfalle =0
n=0 n=N+1
as N — oo O

Theorem 1.3 (Root Test). Let > ", a,, be a series of real or complex numbers and set
£ :=limsup V/|an|
n—oo
If ¢ <1= >, a, converges absolutely and converges. If £ > 1 =>Y">  a, diverges.
If { = 1 = the series may be divergent, conditionally convergent, or absolutely convergent.

Proof. Suppose £ > 1= VN 3In > N s.t.

140 _ (1+0\"
Ian|>;><;> > 1
——

<t

But |a,| = 400 = |a,| /4 0. Thus Y7 | a, diverges. Suppose { <1= INVn > N s.t.

| ‘i<1+e 4] < 1+0\" i 14+2\"
Ap | ™ — a — —— converges
" 2 nl 2 2 s

>0

n=1

Thus Y7 | a, converges. O
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Remark. limsup always exists € RT™ U {+oc}
Theorem 1.4. IfVn € N= f,, is C* and if (f,) = f = f is C°

Theorem 1.5. IfVn e N= f, is C* and if (f,) = f = V[a,b] C X =

/abf—hp/:fn—/abh;nfn

1.3 Power Series

Definition 1.10 (Formal Power Series). Let a € R and let (¢, )nen € RY =

Z en(z—a)”
n=0

is called a formal power series centered at a
Remark. We don "t assume Definition 1.10 converges.
Example 1.1. 3" z"a™ with a € RT converges < |z| < 1

Definition 1.11 (Cauchy). (f,,) with f,,, : X — R is called a Cauchy sequence if

Ve>03N eNst. mn>N=|fn(z)— fulz) <e

Remark. This notion can be generalized to a metric space (X,d) and a sequence (),

Vn,m3IN eNst. Vnm>2N= dx,,xm) <e

Theorem 1.6. If (X, d) is a metric space, every convergent sequence in (X, d) is Cauchy.

Proof. Suppose that (z,), oy is @ sequence in X that converges to an element 2o € X. Let
€ > 0 be arbitrary. By convergence, 3 N € N such that Vn > N such that d(x,,z0) < §.
Hence, Vn,m > N we have

d(l‘n,.’ljm) < d<xn7$0) + d(l‘o,l‘m) < ; —+ % =¥<

" (Tn) pen is Cauchy. O

Definition 1.12. We say that a space (X,d) is a complete metric space < every Cauchy
sequence in (X, d) converges to an element in (X, d).

Definition 1.13 (Radius). Let Y, ¢, (2 — a)™ satisfy Definition 1.10 =

1
R :=

lim sup,,_, |cn|%

is defined as the radius of convergence of said series
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Theorem 1.7. Let ZZO a,x™ be a formal power series with radius of convergence R =
R =sup{p = 0| (anp™)nen is bounded}.

Proof. Let 7 € R and recall Definition 1.13 = taking >~ a,r" means by Theorem 1.10
that a,r™ — 0 and as such > 2 a,r™ is bounded =

{p >0] (anp™) is bounded} D {r >0 | Z anr™ converges in R}
n=0

Conversely, if (a,p") is bounded 3 M € R* s.t. Vn € N = |a,p"| < M

= Vr<p=|ar"| = |anp"] (;) <M (;)

By the comparison test 220:0 an,r™ converges in R =

{p > 0] (anp") is bounded} C {r > 0| Z anr™ converges in R}
n=0

*. Theorem 1.7 is true since we have shown the sets are equal. O

Theorem 1.8. Let Y% ¢ (x — a)™ with radius of convergence R € R
(Ch) If |z —a| < R= 3% calx — a)” converges absolutely.
(Co) If |z —a| > R= Zf;o cn(x — a)™ diverges.
Proof. Notice that at R and a — R anything can happen. Set
ny = 3 1 1
limsup (|ep|lz — a|™)™ = limsup |¢,|" |z — a| = E|x —al

We apply Theorem 1.3 to obtain the result. O

Theorem 1.9. Let 3 7% cn(2z — @)™ with radius R € R*. Let « € (@ —r,a +r) and set
+oo
f@)=) ecalz—a)
n=0
(fi) Vre(0,R) = >, cu(x — a)™ converges uniformly on [a —r,a +r].

In particular f(x) is C° on (a —r,a +7)

(f2) Vr e (0,R) =3, ncy(z —a)" ! converges uniformly on [a — r,a + 7] and
Vze(a—ra+r)= f'(z chnx—a -1

So, in particular, f is differentiable
(fs) Let [y,2] € (a — R,a+ R) =

n+1 (y _ a)nJrl

t R (ot -
/yf;% n—+1
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Proof. Let us prove this result

(f1) Let r € (0, R)
sup |cn(m — a)"| < en|r™
z€la—r,a+7]

If we apply Theorem 1.2, since 7 < R => Y~ |c,|r" converges. Hence

o0

sup  |cn(@ — a)™| converges
n—1T€la—r,a+r]

And thus >~77 | ¢, (z—a)™ converges uniformly on [a—r, a+r] and so Vr € (0, R) = f
is CY on (a —r,a+7), so it is C® on (a — R,a + R)

(f2) Set up(r) = zp(z — a)" = ul, = cpn(z —a)" ! and Y./, is the power series with
radius of convergence
1
/

- limsupn(|cn+1n|)%
Notice Y v/ = (ch+1)(n + 1)(z — a)™. Now since
n +

1 1
41— R=R=—~
(n+1)= lim sup,, |c,|™

So they have the same radius of convergence. Thus > u! converges uniformly on
[a—r,a+7] by (f1). Moreover Y u,, converges uniformly on [a — r,a + r]. Applying
Theorem 1.1 so f is differentiable on (a —r,a + ) and Vz € (z — r,x + r) where

4+ oo
Fl@) =) u(@)
n=0
(f3) >, un converges uniformly on [y, z] by (f1) so Vn € N = u, is C° hence

& +00 s
/yf(t)dt:;%/y wn, (t)dt

Thus Theorem 1.9 is true. O

Theorem 1.10. Let V = (V, || - ||) be a normed vector space and let (v;) be a sequence in

V. If the series -
>
k=1

converges in V = v — 0 in V. In particular, the sequence (vy) is bounded.

1.4 Real-Analytic Functions

Definition 1.14 (Real-Analytic Function). Let f: E CR — R and a € E . We say that f is
real-analytic at @ <= 3r € Rt and (c,)nen € RY s.t.

Ve e (a—ra+r) = f(z) :ch(x—a)”
n=0

Suppose E is open. Then f is real-analytic if it is real analytic at aVa € E
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Notation. RY is the set of sequences taking values in R

Corollary. By (f1) and (f2) of Theorem 1.9 if f is real analytic at a = f is both C° and
differentiable on (a — r,a + r) for some r € R*

Theorem 1.11. Let I C R be an interval and f € C°°(I). Suppose there exists a sequence
of pairwise distinct points (z,) C I with z,, — a € I and f(z,) = 0 for all n.

(A1) Vae ICR= f(a) =0.

(A) Vk>1= f®)(a) =0.

(A3) Suppose additionally that f is real-analytic on I = f =0 on I.

Proof. We attempt to show this is true.

(A1) Since f is continuous and z, — a =

f(a) = lim f(z,)= lim 0=0

n—oo n—o0

(A7) Fix k> 1 and € € RT. Choose y1,...,ypt+1 € (a —€,a+ €) with (y;,y;41) C I s.t.
Vi=1,...,k+1= f(y;)=0
We can do this because of (A7) of Theorem 1.11. By Theorem 2.2 there exist
21552k € (Y5, Yjt+1) and Vi=1,...,k=f'()=0
Iterating by Theorem 2.2 again we have that
Wi, ..., We—1 € (25, 241) and Vi=1,...,k—1= f"(w;) =0
and so on until the k-th derivative. Letting e — 0 = f*)(a) = 0 by continuity.

(A3) Since f now satisfies Definition 1.14 we have for z € (a — p,a + p) where p € R

From (A;) and (Az) of Theorem 1.11 we have Vk = f*)(a) = 0so VYV = f(z) =0
and by continuity Vz € [a — p,a + p] = f(z) = 0. Let H be the set of all intervals
£ C I such that aclandVa € £ = f(x) =0. Define U := J,c 4 £

We claim U = I. Assume by contradiction U C I. Then the union of disjoint intervals
U are closed since f is continuous. Let ¢ be the endpoint of some ¢ € U. Choose a

sequence (Zn)ney C U s.t. lim z, = c.
n— 00

Since Vn € N = f(x,) =0, by (4;) and (As) we have Vk > 0= f*)(c) =0

© £(n) (e
f(x)zzf ()(x—c)"EO forz e (c—&c+¢)

Because of Definition 1.14 for some £ > 0. Hence the interval containing ¢ can be
extended beyond ¢ =<=. Therefore U = I, so f =0 on [.

.. Theorem 1.11 is true. m




1.4. REAL-ANALYTIC FUNCTIONS CHAPTER 1. POWER SERIES

Theorem 1.12. Let f : E C R be real analytic at a = Vk = f is k times differentiable at
a. Moreover 3r > 0s.t. Vk e N=

) (z ch nn—1)---(n—k+1)(zx—a)" "
n>k

Proof. r is where around a we expand to power series 3r > 0st. Ve € (a—r,a+71) =

+o00
flz) = ;cn(ﬂs —a)"

Un

In particular the radius of convergence of this series is larger than r i.e. R > r. Then
Vk € N = the radius of convergence of ) u¥ is R. Hence by (f1) of Theorem 1.9 we have

that > uld converges uniformly on every compact set included in (a — r,a + ). Since it is
true V k we get that f is C* and that Vo € (a —r,a+r) =

F® () ch nn—1)---(n—k+1)(z —a)" "

n=>k

Thus Theorem 1.12 is true. ]

Corollary. Let f: EF — R be real analytic = f is C*° and all derivatives are analytic.
Proof. By Theorem 1.12 O
Corollary (Taylor's Formula). Let f : E — R be real analytic at a« € E. Let r > 0 and
(cn) € RY be s.t.

Vee(a—ra+r)= f(z chm—a

— Vn>0=
f(a)

n!

Cp =

Theorem 1.13. Let a > 0. Let f : [—a,a] — R be C* and suppose there exist C, A > 0 s.t.

VneN=|[fM|w:i= sup |f™(z)] <CA™n!

r€|—a,a
— f admits a power series expansion at 0, i.e., f is real-analytic at 0.

Proof. By Taylor Remainder Theorem we have for any = € [—a,a] and n € N

where Ry (x) = % N+l Since £ € [—a,a] =

VO] < NIFN Voo < CAVFHN + 1))
And note that we can bound Ry (z)

CAN+Y(N +1)! 2|V =

(N +1)! ClAa)™™

[By(z)] <
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Fix z s.t. |z| < &. Let € > 0 and pick M s.t. C(Alz|)™*! < ¢ since Alz| <1 =
VN >M= |Ry() <CAzN" < C(Alz)M T < ¢

Hence lim Ry (x) = 0. Therefore

N—oc0

N k) (o
k=0 ’

for every |z| < min (a, % ). This proves f is real-analytic at 0 as it satisfies Definition 1.14
O

1.5 Abel’s Theorem

Intuition. An Abelian theorem proposes that when there is convergence of the series, the original
object, then the regularized object behaves well. A Tauberian theorem says that if the regularized
object behaves well and we add some condition, then the original object will converge.

Lemma 1.1. Let Z:z% cnx™ have radius of convergence 1. Let

Sn = ch
k=0
= Vze(-1,1)=

+oo +oo
Z crr® = (1 —2) Z Spa®
k=0 k=0

Proof. We start by rewriting c;. Note that V k =
¢, =S, —Skp_1 withS_1=0

Now we can add to these terms the finite sumns of z; =

N N N
E cpz® = g Sk — g Sp_17"*
k=0 k=0

k=0
—_———
E{cvzl Sk—1

And therefore this last term can be rewritten as

N N-1
5 Saat = 3 syt
k=1 k=0
Substituting this into our original equation gives
N N-1
chxk = Z Sk (xk — xkﬂ) +SyaN
k=0 k=0 X
- - zk(1—1x)
Since by assumption (Sy) converges by Theorem 1.10 it is bounded and for € (—1,1)

Syz¥ ———0
N—+oco

Thus fo:o Sx*(1 — x) converges and Lemma 1.1 is true. O

Remark. 3°7%0 ana® — 0% ar = S p_gan(@® — 1) + (2 — 1) Y725 Rppa® + Ry (2™ — 1)

10
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Theorem 1.14 (Abel). Let f be a power series centered at a with radius of convergence
R cRt. If f converges at t =a+ R = f is C° at a + R and

lim f(z)=f(a+R) = i emR™
m=0

z—(a+R)~

Proof. We will take the case where a = 0 and R = 1. By Lemma 1.1 for z € (—1,1) =

+oo “+o0
Z cpa® = (1 —x) Z Spa®
k=0 k=0

Notice that the term Sy

—+o0 “+o0
Sk = E cr, — Ry with Ry = E Cn
~—
k=0 remainder n=k+1

Set Sy = Zﬁ:ﬁ) ci and so Sy, = Soo — Ry

+oo —+oo
= chxk =(1-2) Z(Soo — Ry)a® =
k=0 k=0

Since Y;°° 2 converges we have that

+oo +o0 too
= S5(1 —x)Zxk -1 —m)Zkak =5, —(1 —x)Zkak
k=0 k=0 k=0

Let us show that
+oo

: k
zl;r{lﬁ (1—-ux) kZZOka
error(z)

Let e > 0= Jkg st. Vk > ko = |Ri| < . Notice
+oo +oo
error(z) = (1 — x) Z Rpa® + (1 —12) Z Rz
k<ko k>ko
First for z € (0,1) =

+00 1 too
(l—x)Zka ﬁ(l—x)Zkak <e

1—2x
k>ko k>ko

Since ky is fixed 36 > 0st. Vo € (1 -6,1) =
+oo
(1-x) Z Rya®| < e = |error(z)| < 2¢
k<ko

Hence lim error(xz) =0. Thus
r—1-

“+o0 400
lim E ckxk: g Ck
k=0 k=0

r—1—

This proves Theorem 1.14. O

11
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Theorem 1.15 (Cesaro). Let (ug) be a sequence that converges and suppose ur, — L € R =

1 n
— E up, - L eR
n

k=1

Proof. Let ¢ > 0. Since ug, — L 3 ko st. Vk 2 ko = |up — L| <e

n n ko—1 n
ug | —nL=> (ug—L)=> (ux—L)+ Y _ (ux— L)
k=1 k=1 k=1 k=kq
Notice the following
- I e-n
Z(uk—L) n-e=— Zuk— \Ezluk_LH—T
k=ko k=1
Now 3 k‘1 2 ]{0 s.t.
ko—1

Vn>k — — - L <
n >k nZ\uk | <e

Hence Ve > 03dkg st. Vn >k =

This proves Theorem 1.15. O

Example 1.2. Consider the power series

(P1) What is its radius of convergence R? Is there convergence at the endpoints?
(P2) On what interval is f a priori continuous? Prove that it is continuous on [—R, R).

(P3) Express, using standard elementary functions, the sum of the series obtained by dif-
ferentiating term by term on (—R, R). Deduce an expression for f on (—R, R).

(P4) Compute

>
—n (2n+1)
Proof. Let us try to solve this exercise
(P1) By Definition 1.10 we have that
R 1 < 1 < 1 _1

1 1
: 1\% . n i s 1 \%
limsup,, _, o (27) lim sup,, _, (m) lim sup,, , (3n2)

Thus R = 1. There is convergence at both endpoints +1 by the alternating series test
because terms decrease in absolute value to zero.

(P2) We know that f is a priori continuous on (—1,1). By Theorem 1.14 since it converges,
it is continuous on the closed interval [—1,1].

12
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(P3) Let us try to do this. Notice the derivative is
1)n+1

= ee n+1
f/(x):Zn((Q Ty @nt e oy e m(140?)

n=1 n=1
Newton—Mercator

Let us integrate to find f

f(z) = /ln(l +x2) dz +C
= xln(l + x2> — 2z + 2arctan(z) + C

This is how to deduce an expression for f

(Py) T used Wolfram 14.2 to compute this as I was running out of time.

s
In2+—--2
n2-+ 5
*. we have partly solved Example 1.2. O

Theorem 1.16 (Weak Tauber). Let Z:;% anx” be a power series with radius of convergence
1, and let f be its sum on (—1,1). Suppose lim f(z) exists and a,, = o(%) = the series
1
Y peo ak converges and
lim S, = lim f(z)

n—00 r—1—

where S,, = Y"1 ak.

Proof. Remember that

n

J:):Zak—Zakx Zak— Zakx + Z apz”
k=0 k=0 k=n+1
= iak(l —zF) — Z apz®
k=0

k=n+1
n oo
= E ap(l — %) — E apz®
k=1 k=n+1

k=0 vanishes

Weknow 0 <z <1=1—-2F=(1—-2)1+z+22+---+2" 1) < (1 -2k We take
absolute value in the previous equation and observe

n 00
[Sn = F@)] <D laxlll =¥+ D lagla®
k=1

k=n+1

n (o]

<(1—12x) Zk|ak| + Z |ak|z"
k=1 k=n+1
from step (72)
Now notice that since 1 = % < %
k k k k
‘ak|xk |lak|z < |ak|z
k n

13
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Which we can apply to our previous inequality
S0~ F@I < L-2)Y Kl + 30 Kol
! h k=0 ' k=rtl
Now remember the following fact from the geometric series
n+1 1

= x
k
Cal— <
Z l—2z 1—=2
k=n-+1

Applying this to the previous equation by first noting

n S on(l-x)
k=n-+1 k=n-+1

i klag|z* gsupk>nk|ak| i oF < SUpy~., klag|
n

by geometric series

1

L) we can see

Now since a,, = o (

lim supklag| =0 = lim S, = lim f(x)
n—00 ks n— 0o r—1—

Because as  — 17 and 1 — 2 — 0, so by choosing « close to 1 and n large enough, both
terms on the right tend to zero. O

1.6 log and exp

Definition 1.15 (Exponential). V z € R we define the exponential function as

+oo 4,
o
exp(z) = z;o o eR
Remark. If z € C and if M € M, «»(R) =
+00 +oo n
z" M
exp(z) = Z% - and exp(M) = Z‘B ey

respectively. Note that exp(M + N) = exp(M) exp(N) & MN = NM

Intuition. It might seem counterintuitive, but we will use the inverse of the exponential, the
logarithm function to prove some of the properties of the exponential, before even defining it.

Remark (Stirling). logn! =n -logn —n + O(logn). See Definition 2.5.

Theorem 1.17. The exponential in Definition 1.15 has the following properties
(e1) exp has radius of convergence R = 400
(e2) Yo € R = exp/(z) = exp(z)

)
)
(e3) Va,y € R = exp(z +y) = exp(z) exp(y)
(e4) VzER = exp(z) =0
)

1

(e5) Vo € R = exp(—z) = @

14
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Proof. Let us prove Theorem 1.17

(e1) Define a,, = <. Notice

n!

Now we take log in both sides

Thus R = +o0

n n 1
logn! > 5 log 5 = —logn! >
n

Let n — 4o00. Clearly the right side — 400

E10E 110
2| %% |2 2%

n
2

logn' — 400 = (n')n — 400
n

exp is differentiable by Theorem 1.12. Let us differentiate term by term in the open
interval of convergence. Vz € R =

—+oo

>

k1+ko=n

exp(x) exp(y)

=Rzt X R RSN
() — _ _ _ o
l(n) = SIS S S et
n=0 n=1 = n=0
(e3) We take the following
X b R g ki + ko 1
exp(z) exp(y) = 3 Jey! >3 Jey! /gl'k:g ( ky )(k1+k2)!
k1=0 k2=0
Since both series are absolutely convergent
= xhighs
lkol
Bt k1lko!
is also absolutely convergent =
“+o0
ki+k 1
_ k1 k2 1 2
exp(z) ex = e —_—
p(z) exp(y) k;_o ( k1 )(k1+k2)!
1,R2
+oo +oo
_ k1, k2
-3 % ()
n=0 k1 ,kz=0 ky/ nl

When we set k1 + ko = n and as such ko = n — kq

v (3)-

Adding this result to the previous equality

Z .Tklyn kl

k1=0

< 1) =(z+y)"

+oo

zzg

(x +y)" =exp(z +y)
n=0 "

15
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(eg) Tz > 0=exp(z) 21>0. Let z <0 and set z = —a with a € RT =

+oo
_1)n
exp(z) = Z (=1 ~a”
This is an alternating series hence exp(z) > 0 which is the sign of the first term.
(e5) Since exp(0) =1=sety ==

1 =exp(z — x) = exp(z) exp(—x)

This because of (e3) of this Theorem.

= m = exp(—x)

This proves Theorem 1.17. O

Definition 1.16 (Logarithm). We define the natural logarithm function In = log : (0,00) —
R to be the inverse of Definition 1.15. Thus exp (log(sc)) =z and log (exp(x)) = T

Notation. We refer to the identity matrix and function by the same notation id

Example 1.3. Let n > 1 = Ja > 0s.t. VA € M,«»,(R) with |A —id|| <a= IB €
Myxn(R) s.t. A = exp(B).

Proof. Let X € M, x»(R) s.t. | X|| < 1. Consider the following power series expansion

oo Xk
log(id + X) Z ot
k=1
This series converges because of the following
S enen X ] < S
k=1 k=1

Define oo :=1 =V A € M, (R) with ||[A —id|| < a, set X := A —id so that | X]|| < 1.

- A —id)*
Define B :=log(A) := Z(—l)k“%
k=1
And by Definition 1.16 exp(B) = A O

Lemma 1.2. Vz € R = exp(z) = exp(1)”

Proof. Let f(z) = exp(x). Then f(z +y) = f(x)f(y )and fis C% We show Vn € N =
f(n) = f(1)". For n =1 trivial. Suppose f(n) = f(1)" =

fln+1) = f(n)f(1) = f)"+!

= f(n) = f(1)"Vn eN. Forn € Z, f(—n)f(n) = f(0) =1 = f(—n) = f(1)"". For
q¢ = £ € Q we have the following expression

f@™ = f(mq) = f(p) = fF(1)P = flq) = fF(1)™ = F(1)*
Since fis C' = Vz e R = f(z) = f(1)* O

16
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Theorem 1.18. Vz € (—1,1) =

+oo

log(l—m):—zﬁ

n=1

is convergent

Proof. V2 € Rt = log'(z) = L. Notice that

“+o0

1
Vi -1,1) = = t"
€(-L) = — ;

Radius of convergence is 1. Hence since [0, 2] C (—1,1) we have
z too
—dt = t"dt
f =2,

+oo xn-l—l +oo  n

ot =3 =5
n=0 n=1

And then we have

+oo z™ 0

n=1"n_

Hence log(1l — z) = —

1.7 Complex Analysis

Intuition. We now will do > a,2" for z € C and a,, € R

Definition 1.17. Let z = « + iy € C. The real part of z is defined by
R(z) ==z
and the imaginary part of z is defined by

=)=y

Lemma 1.3. Let > -, a,2" be a power series with radius of convergence R € [0, +o0]
(c1) Vz € Cwith |2 < R= ), 5,a,2" converges absolutely

(c2) Vz € Cwith || > R= ) ;a,2" diverges

Theorem 1.19 (Cauchy Formula). Let r € (0, R) =

1 o f( i@) 7in0d9
Gp = — re')e
2 0

Proof. Observe Vk € Z # 0 and for k =0
2 ) 2m .
/ e*dh =0 and / e*do = om
0 0

respectively. Now we can do the following

f(mie) — Z Tnaneine

n

17



1.7. COMPLEX ANALYSIS CHAPTER 1. POWER SERIES

f(reie)e’ine _ Z rnanei(nfm)e
n

And notice n — n = k. Now take the integral
2T ) ) 2m )
f(re®®) e m0ap = r”an/ =m0y = prg, 2n
0 0

This somehow proves the result. O

Suppose R = 4+00. Suppose f is bounded on C = f is constant.

First for n # 0.
1 27
n < -
|f™(0)] < 5, Sup /]

True of every r > 0. Letting r — +o0 gives

Vn2l= fM0)=0=>VYn>1=a, = =0

.. f is constant. O

Definition 1.18. Let (X, d) be a metric space. Let A C X. We define the boundary of A as

0A = AN A

where A denotes the closure of A and A¢ its complement.

Theorem 1.20 (Liouville). Let f : R®* - R be C’ s.t. Vo2 € R and r > 0 =

1

fle) = |0B(z,7)| Jop(a,r

f

We say that f has the mean value property = if f is bounded = f is constant.

Proof. Take n = 2 as it doesn’t change anything.

1

— VzcR?and r e R = f(2) = —
|B(£IJ7T)| B(z,r)

f

Now notice the following

1
f@ - o)l < [ [
| | B(zr)\B(y,r) U Blyo\B(zr) | B0, 7)]

For R > 100 - ||z — y|| for instance we have that

[f(2) = f(y)] < sup|f| - Area(B(z, R) \ B(y, R) U B(y, R) \ B(z, R))

1
|B(0, )]

X

1
- .¢-Rlx —
B0, P 1 e Blz =

for some constant ¢ € Rt universal

BO,R)| = nR® = Je > 0st. |f(e) - f(y)| < SIZ=YI

And then R — 400 = f(z) = f(y) - R. O

18
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Notation. For d > 1, we denote

728 ={(x1,...,2q) |[Vi=1,...,d > z; €Z }.
Definition 1.19 (Harmonic). Let f : Z¢ — R. We say f is harmonic if

d
VUEZd:>f 1612 U"’ez +f(U_ez))

Theorem 1.21 (Liouville). Let f be harmonic on Z¢ and bounded = f is constant.

Theorem 1.22 (Liouville-Improvement). Take d = 2 and suppose f is harmonic on the lattice
Z? and bounded on 99.9999999% of Z? = f is constant.

Remark. Not true on Z<¢ for d > 3. Wow! This is a recent result.

Definition 1.20. Let A C R. The density of A is defined by

. |AN[-R,R]
o) = m TR A

whenever the limit exists.

19
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Chapter 2

Differentiation on R — R

2.1 Derivatives on R

Intuition. Suppose a function f: R — R. Let xg € R. The goal is to approximate f around zg
by a linear affine function
T axr+b

What is a,b? We want f(z) ~ ax + b for x ~ 29 = f(x¢) = axo + b. Hence

f(z) ~a(x — x0) + f(z0)
f(x) = f(z0) = a(x — x0)
M ~ g 4+ something small
r — X
And as such we have
o= tim 1B =S@)

T—To r — X

Definition 2.1 (Derivative). Let I be open and a € I = f is differentiable at a if

o £@) = £(a)

T—a Tr—a

exists. When it does, we call it the derivative of f at a
Notation. The derivative in Definition 2.1 is denoted a f’(a)

Remark. The best linear approximation of f around a is « — f(a)+ f'(a)(z—a), that is, the
tangent to the curve at a. More generally, near a we have the second-order approximation

1) = f@) + S @ —a) + T @ a1

Definition 2.2. Let I be open. Let f: I — R and a € I. We say a is the local min of f if
JreRtst. Ve e(a—ra+r)C 1= f(z)> f(a)

the local max is the same analogously.

Notation. This is the same as saying 3¢ € Rt s.t. Vy € B(x,e) = f(y) = f(x)

20



2.1. DERIVATIVES ON R CHAPTER 2. DIFFERENTIATION ON R™ — R™

Theorem 2.1. Let I be open. Let f: I — R and a € I. Let a be a local minmax of f.
Suppose f is differentiable at a = f'(a) =0

Proof. Take x € (a,a + ). Let us look at

f(xa)c : (J:(a) >0 for r small enough
—~—
>0
:>f’(a) = lim M >0
T—a r—a
Similarly, if one takes z € (a —r,a) =
M <0 for r small enough
T —a
~——
<0
:>f’(a) = lim M g()
rx—a r—a
- f'(a) =0. -

Theorem 2.2 (Rolle's). Let f : [a,b] — R be continuous on [a, b] and differentiable on (a, b).
Suppose f(a) = f(b) = Jc€ (a,b) s.t. f'(c) =0.

Proof. If f is constant = f/(x) = 0. Otherwise, suppose f attains a minimum or maximum
at ¢ € (a,b) = c satisfies Definition 2.2 of f on (a,b), and by Theorem 2.1 = f'(¢) =0. O
Theorem 2.3 (Mean Value). Let f : [a,b] — R continuous and differentiable on (a,b) =

Jec € (a,b) s.t.
f(b) — f(a)

o =10=1

Proof. Let f(z) and we construct a linear function

= L) = £(@) - fla) - IO 0 o)~ 42 - t(a)

Notice L(a) = 0 = L(b) = by Theorem 2.2 3¢ € (a,b) s.t. L'(c) =0
MY — ) — f(b) — f(a) / f(b) — f(a)

v =0=ye) - 1O py IO
.. Theorem 2.3 is true. O
Corollary. If f' =0 on (a,b) = f is constant
Proof. By Theorem 2.3 3¢ € (a,b) s.t.

/ _ f(b) B f(a) _
fi(e)= —3—a Y

But this means f(b) — f(a) =0 = f(b) = f(a). Hence f is constant. O
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2.2. DERIVATIVES ON R"™ CHAPTER 2. DIFFERENTIATION ON R™ — R™

Let f : R — R continuous and differentiable on R \ {0}. Suppose that f’(x) has
limit ¢ as x — 0 where = # 0 = f is differentiable at 0 and f/(0) = ¢

Take z # 0
f(z) = f(0)
!/
f (c) - T 0
for some ¢, s.t. |¢| < |z|. Now since
flly) — ¢ and ¢z —— 0
y—0 z—0
oy — . @)= £(0) _
:>f(c$)—€:>i1£% po =/

.. [ is differentiable at 0 and f'(0) = ¢ O

2.2 Derivatives on R"

Intuition. Take f : R™ — R™. Let zg € R™. We want to approximate f by a linear affine
function around xq
r— Az +0b

where b € R and A € M,,,x,(R). We want f(xo) = Azg + b. Hence we want a matrix s.t.

f(x) =~ f(z0) + A(x — o)

Definition 2.3 (Norm). Let V be a vector space over R. A norm on V is a function ||| :
V' — R that satisfies the following properties

(Ni) Vz eV =|z|]| >0

)
(N2) ||lz|| = 0 < 2 = 0, where 0 is the additive identity of V
(N3) Ve e Vand VA € R= || A\z| = |A|]|z|

)

(Vo) Va,y €V = [lz+yl < |z + [lyll

Definition 2.4. Let £ be the space of linear maps between normed vector spaces. The norm

on L defined by
VLeL=|L|,:=sup |L@)]

a0 ||2]

is called the subordinate norm.

Example 2.1. The subordinate norm ||L| , is a norm in £
Proof. Let us show this is a norm
(N1) Since ||L]| , is a fraction of two norms who are already > 0 = ||L||, > 0

[E@]]

(IV2) ||L||£:0<:>SUPz7£O IEa]

& || L(z)|| =0 L(z) =0
(Ng) Let A\eR

Ll = sup RE@I_  NIE@)]

IZ@)]

]

= |)‘|Si% = ML .
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(Ng) Let LT e L= V2o #0=

[ +D)@)] L@ |, [[T@]

X

= IL+Tle <Ll + 1T,

EIR T

]

.. the subordinate norm |[|L||» is a norm in L. O
Remark. All norms are equivalent on R™

Definition 2.5 (Landau). Consider two norms on R™ and R™ both denoted by |||
(O1) Let a,b:R™ — R™. We say that
a(x) = 04, (b(z))
if 3¢ > 0 and ¢ : B(xg,e) — R s.t.
lo(@)|] = e(@) - [[p()l]
with ¢(xz) — 0 as ||z — zo|| = 0
(O2) We say a(z) = O, (b(z)) if 3e > 0and M > 0 s.t. Va € B(xg,e) =

la(@)|] < M - [|b(@)]
Notation. This is known as Landau or Big O notation

Definition 2.6 (Fréchet Derivative). Let X C R™ be open. Let f : X — R™. Let a € X.
We say f is Fréchet differentiable at a if 39 a linear map L : R® — R™ s.t.
f(z) = fla) + L(z — a) + 0a(x — a)

Equivalently we can also say

o 1@ = £@) ~ L - a)

= [l = all

=0

We call L the derivative of f at a and denote it by DF,

@]

Remark. e(z) = o,(z — a) if To=all

||z—al—0

Example 2.2. Let f : R™ — R™ where f : 2 — (u,x) with u € R"
Proof. Let us show that

= (u,z) + (u, h)

= F(@) + (b

= f(@) + f(h) +o(|IRl])
— ——

linear oz (h)

By Definition 2.6 = f is differentiable and Vz € R" = Df, = f O

Example 2.3. Let f : R™ — R™ with f:z +— (z, Az), where A € M, x,(R)
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Proof. Let us take

flx+h)={x+h, Az + h))
= (z,Az) + (h,Az) + (x, Ah) + (h, Ah)

Set L(h) = (h, Az) + (z, Ah)
= f(x+h) = f(z) + L(h) + (h, Ah)
We have to show (h, Ah) satisfies (O); of Definition 2.5.
(h, Ah) = hihjAj
|(h, AB)| < max| A (> In |)
Take ||h|| = >, |h;|. Hence, for A € R? =

|(h, Ah)| .
Rl w0

|(h, AR)| < A [I1])*
Hence (h, Ah) = o0, (h). Thus
f@+h) = f(z)+ L(h) + 0x(h)

Thus, the derivative of f at « is D f,(h) = (h, Ax) + (x, Ah). O

Notation. We denote by
Sp={c:{1,...,n} = {1,...,n} | o is a bijection}

the set of all permutations of {1,...,n}

Example 2.4. Let f: My xn(R) = R where M — det(M)

Proof. Let o € S,,. Define sgn(o) as

(o) +1 if o is even
sgn(o) =
2 —1 if ois odd

The determinant of M € M,,«,(R) is then defined by
det(M) = Z Sgn Hm10(1
g€Sy
Notice that sgn(c) = (—1)V() where N(o) is the number of inversions
N(o) =#{z <y|o(z) > o(y)}
Now, by multilinearity and antisymmetry of det we have
det(id + H) = > sgn(o) [[ (id+ H)io()

g€Sy, =1 v
(1d>w( )y +Hio (i)
———

1s(i)=1i

:::

Z sgn(o

ocES, ’L:1

(oee=s 7 2l
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Ifo=id

n n

H(la(i):i +H,)) = H(l +Hy) = Z H H;

i=1 i=1 EC{1,...,n}i€E
n
= 1 _+> H;+o(|H|)
Feo =1 e

S |E|>2
|E|=1

Hence when o #id = 34 # j s.t. 0(i) # i and o(j) # j. Hence

2
| I( Lowy=r +Hiow)) = o(H|%)
k=1 v .

0 for k=j and %

Hence
det(M) = sgn(id)(1 + trace(H) + o(|H|?))
=1
= det(id) + trace(H) + o(|H|?)
= det(id) + trace(H) + o(||H||)
Which is a coarser asymptotic. O

Intuition. This is the derivative. A linear approximation and a remainder.

Notation. When F : X C R"™ — R™ we have F' = (f1, ..., fm)

Theorem 2.4. Let F': X C R™ — R™ with X open.
Fy) Va € X = F is differentiable at a => F is C° at a
F5) F constant — F’ is differentiable with derivative zero.

Fy) F,G differentiable at a = F + G differentiable at a

(F1)
(F2)
(F3) F linear = F is differentiable and Va € X = DF, = F
(F4)
(F5) F differentiable < f; differentiable at a Vi € {1,...,m}
Proof. Let us prove Theorem 2.4

(F1) Let us remember that F(a + h) = F(a) + DF,(h) + £(h) with

e(h)
ThT 70 hence e(h) P 0

Now L(h) is linear, and because of finite dimensions, it is continuous
L(h) — L(0) =0 thus F(a+h) — F(a)
h—0 h—0
which makes F' continuous at a

(F) Notice the following

Fzx+h)=F(x)=c
=F(z)+ L(h)+0=c+ L(h)

Which means V h = L(h) = 0. Hence F is differentiable and Vx = DF, =0
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(F3) The proof is the same as (Fj)
(F4) The proof is allegedly very simple
(F5) For the norm of R™ choose

e = max fo,

= Suppose F is differentiable at a and let A = DF, with A = (¢1---4,,).
Now notice the following

HF((E +h)— F(x) — A(h)H = max |f1(ac +h) — fi(z) —&-(h)’

i<1i<n

By assumption of F’
| £+ h) — F(z) - A(h)|

—0
(IRl
Hence Vi € {1, ...,m} we have that
| filx + k) — fi(z) — €;(R)| 50
(IRl
Hence f; is differentiable with derivative ¢;
<= is the same proof as the necessity.
.. Theorem 2.4 is true. O

Notation. For a square matrix M € M, (R) and an integer p > 1, we define

MP=MM-.-M.
—_—

p times

Definition 2.7. A norm || - || on M,,x,(R) is sub-multiplicative if

VA,B e M,xn(R) = [[AB| < A |B]

Example 2.5. Let p > 1 and n > 1. Let f : Mpxn(R) — Myxn(R) with M — MP
Proof. Let us show that
(M+H)? =MP+ Ly(H) + o(|H||)

We start by expanding

p—1

(M+H)? =M? + Y MFHM + H)P~'~*
k=0
p—1

=MP+ > MFHMP'"F+ R(H)

k=0 Remainder

Lm(H)

Which means we need to show the following is true

p—1
R(H) = (M + H)” - MP — Ly(H) = > MFH((M + H)?~' =5 - M7~%) — o(|H]))
k=0
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Fixing ¢ > 1 we expand this take norm from Definition 2.4 that satisfies Definition 2.7
! j 2
[M+H)?-M <C, ) [H| =|RH)| < C|H]|
j=1

Notice that
[((M+H)? — MP — Ly(H)||

<C|H|| ——0
[H]| e
Thus f is differentiable. O

Definition 2.8. The inverse image of B C Y under the function f: X — Y is the set

fTIBli={z € X | f(z) € B}

Theorem 2.5. Let (X,d), (Y,p) and f: X — X. The following are equivalent:
(01) f is continuous

(02) YW open in (Y, p) = f<[W] is open in (X, d)

(03) YV F closed in (Y, p) = f<[F] is closed in (X, d)

Proof. (01) = (02) Let W be any open subset of Y. Let € f< [W]. Since W is open,
de > 0s.t. B,(f(x),e) € W. Since we assumed f is continuous at ,

F9>0stVze X, dz,z)<d=p(flx), f(z) <e
Observe that By(z,d) C f<[W]. Take z € B(x,0), which implies
f(z) € By(f(x),e) W

(02) = (03). Suppose F C Y is any closed set. Then Y \ F is open in Y. By the previous
implication, f<[Y \ F] is open in X. Moreover, note that

fCYNF] = fOYINfO[F] = X\ fOIF]
But this set is open, so its complement .. f<[F] is closed in X.

(03) = (01) Suppose x € X is any element and ¢ > 0 is arbitrary. Consider B(f(z),¢e),
which is open in Y, since all balls are open. Then Y \ B(f(z),¢) is closed in Y. By (02),
fEIY\ B(f(x),¢)] is closed in X, and moreover,

FEYA\B(f(z),e)l = fTIYIN fT[B(f(z),0)] = X\ fT[B(f(x), )]
= f[B(f(z),e)] is open in X = z € f<[B(f(x),¢)], and since it is open
36 >0 st. B(z,0) C fT[B(f(x),¢)]

It follows that
f[B(z,0)] C fT[B(f(x),¢)]

Indeed, suppose z € f[B(z,d)] is arbitrary.
= Jy € B(x,9) st. 2= f(y) =y € fT[B(f(2),¢)]
Then f(y) € B(f(z),e), but f(y) = z, which proves the inclusion
f[B(,8)] € f[B(f(x),¢)]

.. f is continuous at x, and it follows that f is continuous on all of X. O
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Definition 2.9. Let (V, (-,-)) be an inner product space. We define the norm of x € V as
the number € R
2] = v/ (z,z)

Note that ||-|| : V' — R is a function.

Lemma 2.1. The set of invertible matrices G, xn(R) € My« (R) and is open.
Proof. Remember the set of invertible matrices is
Gnxn(R) = {M € M;xn(R) | det(M) # 0}
We know det is continuous and R \ {0} to be open on R.
Gnxn(R) = det™ (R \ {0})

By (02) of Theorem 2.5 = G,,«,,(R) is open since it is the inverse image of an open set. [J

Example 2.6. Let g : Gnxn(R) = Gpxn(R) with M — M™*
Proof. We know from Lemma 2.1 that G, «,(R) is open in M, x,(R). Now
M~ M
is a rational function, so it is differentiable. We have
X+H) !'=X"'T1+HX!

Then we have v = HX ™! with |ju|| < 1 and

o0

T4+u) =5~

n=0

— (X +H) ' =X - XTTHX ! 4o(|H|?)
N——
Lxm)

Which is the linear map we need from Definition 2.6

2. Dgx)(H) = =X '"HX ! is the derivative of this function. O

Definition 2.10. For (Ay,..., ;) € R™, we define

A0 0
0 Ao 0
diag(A1,..., ) = .
0 0 - \,
the diagonal matrix in M,,(R) whose diagonal entries are A1,..., A,

Definition 2.11. A matrix M € M, «,(R) is said to be diagonalizable if there exists an
invertible matrix P € M« (R) and a diagonal matrix D € M,,»,(R) such that

M =PDP!

where D = diag(A1, A2, ..., \n)
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Definition 2.12 (Partial Derivative). Let f : X C R™ — R with X open. We call partial
derivative of f at a € X w.r.t. x; the limit

i £+ he) = £(@)
h—0 h

whenever it exists, and is denoted by

of
oz, (a)
Remark.
0
0 — 1 i—t}&try
0

Definition 2.13 (Directional Derivative). Let f : X C R™ — R with X open. Let v € R™.
We call directional derivative of f at a € X along v the limit

o Hlat o) - f(@
h—0 h

whenever it exists.

Lemma 2.2. Let f: X C R™ — R with X open. Suppose f is differentiable at a = the
directional derivative exists and Vv € R*

1o Hatho) = f(a)

h—0 h

= Dfq(v)

In particular V {1,...,n} =

of . _
S (a) = Dfales)
Proof. We have f(aJr\tg/) = f(a) + Dfq(h) + e(h) where
h
e(h)
2 40 and k|| = |t|||v
Al 121l = [¢l[lv]l
e(h)
e — 0= e(h) =o(t) = fla+tv) = f(a) + tDf,(v) + o(t)
e flat 1) f(a) 0
a—+tv)— fla )
Het =19 — pruw)+ 22 — Dralo)
So the directional derivative exists and equals D f,(v) O
Example 2.7. Let f : R? — R defined by
£ itz o0

f has directional derivatives in every direction at (0, 0), yet is not continuous at this point.
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Proof. Let v = (v1,v2) € R%. Consider from Definition 2.13 the directional derivative

lim f(0+ hvy,04 hovg) — £(0,0)
h—0 h

The first case is v1 # 0

(hva)? 0 h2v3 2 2
f(h'l}l,h’l)z) —f(0,0) _ hvy - _ hvy  __ % _ U72

h h h  hur v

Second case is v1 = 0
f(0,hv) — f(0,0)  hvy —0

h h

:’[}2

So the directional derivatives are
2
Y2 U1 7é O

’L)1’
V2, (% =0

Now suppose f were continuous at 0. Then for € = % 34 s.t.

Va2 +y? < 8 = |f(z,y) — £(0,0)] <%

Consider 3 = 2'/2 which means f(z,z'/?) =1 so

VIR = Vet e <= i@ - 0.0l =1 -0 =1£ 3

Which means f is not continuous at (0,0) while having directional derivatives. O

Let f: X CR™ — R™ with X open. Let a € X. Suppose f is differentiable at a

(@) - )
Ja(f) = Mp.(Dfa) = : . ;
Fe@ o Gl
where J,(f) is called the Jacobian matrix
Let L : R™ — R™. Now
Li(ey) Li(en)
Mg, (L) =
L (e1) Lo (€n)
Therefore (Mp,(L)):; = (L(ej),e;i)
D(f1)a(e;)
L =Dfa(e;) = :
D(fm)a(e;)

And by Lemma 2.2 we have that

(D). = Dlfdales) = 522(a)

Thus Mp, (Dfa)ij = To(f)ij = ngj(a) -
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Notation. Mp_ (L) denotes the matrix of L : R®™ — R™ in the canonical bases

Theorem 2.6. Let f: X CR™ — R™. Let a € X. Suppose the partials exist on B(a,¢) for
some € € RT and suppose that Vi € {1,...,m} and % is C at @ = f is differentiable at a

Proof. Let us consider the case m = 2 so a = (a1, az)

flar + hi,a2 + ha) — far,a2) =f(a1 + h1,a2 + ha) — f(a1, a2 + ha)
+ f(a1, a2 + ha) + f(ar,a2)

For ”(hl, h2)|| small enough we have x — f(z, as + ho) differentiable on [a1, a1 + hq].

By Theorem 2.3 3 ¢; € (a1,a1 + hy) s.t.

0
flar + hi, a2 + ha) — f(a1,a2 + ho) = h1£(61,02 + ha)

Similarly 3¢, € (CLQ, as + hg) s.t.
of
flar,a2 + he) — f(ai,a2) = h287y(a1702)
Thus

0 0
flar + hi,a2 + ha) — f(a1,a2) = hlaT];(Cl,GQ + ha) + hga—z(al,@)

Since (z,y) — %(x,y) is CY at (a1,az)

ﬂ(cl,ag + hg) = ai((h, a2) + 0(1)

or ox ——
h—0
Since (z,y) — g—i(x,y) is CO at (ay,az)
0 0
aijc(al,@) _ a—£<a1,a2> +o(1)
R0
Thus
flar + hi, a2 + ha)—f(a1,a2) =
0 0
hlafi(al, ag) + hg%(dh (12) + th(l) + hQO(l)
e(h)
e(h) 1
Al 0 and Al > EmaX(|h1|, |hal)
Thus
flai + hi,a2 + ho)—f(a1,a2) =
0 0
gt (ar.02) + ha 3 (an, )+ o )
-, [ is differentiable. £(h) = o(1) and £2 — o O

Remark. We deduce from Theorem 2.6 that polynomials are differentiable.

Example 2.8. Let f : R? — R with f : (z,y) — 2y + 22
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Proof. Let us look at the tangent plane to the graph of f at (1,1)

0
—f:y+2x and

8f_$
ox

e

Which by Definition 2.12 are the relevant partial derivatives. At (1,1)

of of
ZL=-14+2.1=3 d =1
ox + o oy
We know the equation for a tangent plane at (1,1) is
af of
) =Z@-D+Zy-1
s~ fLD) = G- D+ 5 -1
z2—=2=3xz-1)+(y—-1)=2z=3x+y—2
This is the tangent plane. O
Theorem 2.7. Let f : R™ — R be differentiable at 0 and satisfy
VeeR"=2#0 and VteRiéf(tm)ztf(x)

— f is linear.
Proof. Since f is differentiable at 0 by Definition 2.6 3 L : R" — R s.t.
f(x) = f(0) + L(z) + o([|=[])
By our second assumption about this function we have that
Vi>0=f(0) = f(t-0) =tf(0) = 0 = f(z) = L(z) + o(]|x[])

Using f(tz) = tf(x)

TU2) _ pay + 2D 1) 1 ol
Vo eR"= f(x) = L(z), so f is linear. O

Definition 2.14 (Gradient). Let f : X € R™ — R with X open. Suppose the partial
derivatives exist at a € X. The gradient of f at a is

Vi@ = (L@ @)

" Oxy,

If fisdiffat a=VheR"
Dfa(h‘) = <Vf(a)7h> = ja(f)

Indeed J,(f) = (g—jl(a), . ,%) € Mixn(R)

2.3 The Chain Rule

Intuition. We have X C R" &5 F(X) C Y C R™ 5 R*. Which means G o F : X — RF
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Definition 2.15 (Lipschitz). Let (X,d) and (Y,p) be any metric spaces. We say that a
function f : X — Y is Lipschitz continuous if there exists a Lipschitz constant ¢ < 0 such
that

Va,z€ X = p(f(x).f(2) <c-d(z,2)

Let (X,d) and (Y, p) be metric spaces. If f : X — Y is Lipschitz = f is C°
Let g € X be arbitrary. Let ¢ € R be any. Define § = £, where ¢ > 0 is such that
Va,y € X = p(f(2).f(y)) <c-d(z,y)

It follows that
Vee X =dx,x) <= p(f(x).f(xo)) <e

Indeed, let z € X s.t. d(z,z) < 0 =
o(f(2).f(20)) < ¢+ d(@,20) < c-F =

.. f is continuous at xg. Since xg is arbitrary, it is continuous on the whole space. O
Remark. Linear maps are Lipschitz because all linear maps are continuous.

Theorem 2.8 (Chain Rule). Let X C R™ be open, Y C R™ open, F : X — R™ s.t.
F(X) CY and G : Y — Rk, Let a € X. Suppose F is differentiable at a and G is
differentiable at F'(a) = G o F is differentiable at a and

D(GoF)q = DGp)o DF,

Proof. We have G(F(a + h)) = ---. Since F is differentiable at a
h
F(a+h)+ DF,(h)+¢e(h) where ||€|(h||)H — 0
—_———
:=h'

Since G is differentiable at F'(a)

e,

G(F(a+h)) = G(F(a) + 1) = G(F(a) + DG p(ay (W) + &(h') where W woo

DGra)(h') = DGpa)(DFu(h)) + DG p(ay (e(h))

Since DG F(a) 1s linear and finite dimensional it satisfies Definition 2.15 3¢ > 0 s.t.

vy eR" = | DGruw)|| < Iyl

[DCroch)
Il
Thus DGpa (e(h)) = o(||]]). Let us also show &(h') = o ||A]))

= HDGF<a>(€(h))H e |em)| =

h' = DF,(h) +¢<(h)
Using the Lipschitz property of DF, we know there 3¢ > 0 s.t. ||h’H <c-|lh|

O _ llgenll Wl lEe)l]

<ec 0
gl 1 —r| IRl r—0
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Thus £(h’) = o(||h||) and hence
GoF(z+h)=G(F(r)) + DGp) o DF,(h) + o(||h]])

which satisfies Definition 2.6 O

Remark. Let L : R" — R* and ||z = max|z;| so z = z1e1 + - zpen

L(z)=x1L(e1) + -+ + xnL(en)

2@l <l D 1)l

=cC

Theorem 2.9. Let (-) be a scalar product in R™ and ||-|| the associated norm by Definition 2.9

(d1) ||| is differentiable on R™ \ {0}

(d2) ||| is not differentiable on 0

Proof. Let us proceed with the proof.

(d1) We can write the norm from Definition 2.9 as the composition || - || = Go F
F:R" >R with F:z— (r,z) and G:(0,00) >R with G:2— Vx

Both of which are differentiable

1
Va e R" = DF,(h) = 2(a, h) and VaeR" = DGpey(s) = 2—\/23
By Theorem 2.8 we have d(| - [|)a = DG p(q) © DF, hence
{a, h)
d(l[ - Na(h) = DGyap2 (DFy(R)) = —— - 2(a, h) =
(1 Da(h) = DGiage (DFu(h)) = 5r - 2erk) = 77

d([l - IN)a(h) = S5 for a #0

llall

(d2) Suppose by contradiction, ||-|| satisfies Definition 2.6 and take a = 0
l]| = [|0[] + L(z = 0) + 0o(x) = L() + 0o(x)
Since L is linear v € R™ s.t. L(x) = (v, ). Suppose |ju|| = 1 and 2 = tu with t — 0

[l = L(Ew)| _ [t = tv, )|
[t 2|

= [1 = sgn(t) (v, u)|

11— (v,u)| =0= (v,u) =1 and 14 (v,u)) =0= (v,u) = —1

t>0 t<0

=< since (v, u) can’t have two different values.

.. Theorem 2.9 is true. O

Intuition. We now will prove that Definition 2.14 is orthogonal to the level sets.

Theorem 2.10. Let f : X C R™ — R with X open, f differentiable, and z € X. Suppose
Vf(z) # 0= Vf(x) points in direction of sharpest increase of f.
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Proof. Let v € Rt s.t. v =1

i L@ 10) = @)
t—0 t

We can then observe that for

Vi(z) : .
v=r=——7 = sup (Vf(z),v) is attained
V@I o=
which means v is in direction of the gradient. O

Definition 2.16 (Level Set). Let f : R™ — R and o € R. The level set of f at « is
So :={z e R" | f(z) = a}.
Theorem 2.11. Let f: X C R™ — R be differentiable and o € R. Set S, to be the level

set. Also suppose Vf(z) #0 = Vf(z) L S, at z € S,. Meaning V~ : (—¢g,e) = S, that
is differentiable s.t. v(0) we have

(v(0), V£(z)) =0

Proof. Since V¢ € (—¢g,e) = v(t) = So = f(7(t)) = a. We know p(t) := f(y(t)) = a is
differentiable. By Theorem 2.8

P(t)=(Vf(v(t),Y(t) =0
Att=0=> (V(z),7(0)) =0 O

Notation. Remember ||-||, is the Euclidean norm.

Theorem 2.12. Let r > 0 and set S, ;== {z € R" | ||z||, =r}. ThenVz € S, =z L S,

Proof. Set f := ||z||, and notice it is differentiable by Theorem 2.9

X

P

= Vf(z)

Take x € S, = Vf(z) = 7. But we know from Theorem 2.11 that is we take v : (—¢,e) —
Sy

('(0), V(@) = 0= {7/(0), 7)

.. L S; since multiplying by r preserves orthogonality. O

Theorem 2.13. Let u # 0 € R™. Let f : R™ — R differentiable s.t. V2 € R* I\, € R s.t.
Vf(z) = Ayu. Show that 3o : R —» R s.t. Vo € R" = f(z) = p({z,u))

Proof. Let & € R and H := {x € R" | (z,u) = a}. Let =,y € H, which is the affine
hyperplane, and we can link through a path v(t) = (1 — t)x + ty

= Vte (0,1)=+{t)=y—=z
Set p: [0,1] — R with p =t +— f(v(¢)), notice p is differentiable

=Vt (0,1) =p'(t) =(VF(v(¥),7' () =(VF(2(¥),y — x)
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By assumption V f(v(t)) is proportional to (¢) which is orthogonal to H
:}p/(t) = <>‘$uay - I> = >‘x<u7y - I> =0

. f(x) = f(y) which means f is constant = affine hyperplane is a level set. O

Theorem 2.14 (MVT Reloaded). Let f : U C R® — R™ with U open. If f is C' on the
segment [a,b] and IM € RT s.t Ve € (a,b) = ||[Dfe]| < M =

1f(0) = fla)ll < M|b — al
Proof. Let ¢ > 0. Consider the following set.
S={telab]||ft) - fa)|]| <M(t—a)+e(t—a)+e}
Since f is CY = s.t.
36>0st. Vs€a,a+d] = ||f(s)— f(a)|| <e

Hence a4+ 0 € S. Let ¢c:=supS. Note c € S = a+ J < ¢ < b Suppose, by contradiction,
that ¢ < b = f is differentiable in ¢ and

360 € (0,min{c — a,b —c}) s.t ifls — c| <o => || f(s) — f(c) — Dfe(s — ¢)|| <els— ¢l
By assumption, if s € (¢, ¢+ dp)
1£Gs) = F@)ll < 1£() = ) + ]| £(e) = F(a)]
[£(s) = f(c) = Dfe(s = )| + || Dfe(s = o)|| + || £ (c) = f(a)]

e(s—c)+ (s—c)||Dfe(0)|| + M(c—a)+e(c—a) +¢
(s—a)+e(s—a)+e

S

S

NN CINN

But this shows ¢ # sup .S = ¢ = b which implies
1£(®) = fa)| < M(b—a) +e(b—a) +e = [|f(b) — f(a)|| < M(b—a)

Hence Theorem 2.14 is true. ]

2.4 Clairaut Theorem

Definition 2.17 (Second Derivative). Let f: X C R" — R. We call

2
vicijsn= oL -2 (2]

= 813](9561 - 87217] 62171

the second derivative of f whenever f has differentiable first partial derivatives.

Definition 2.18 (C! and C?). Let f: X CR"® - R
(C1) We say f is C!if f is differentiable with continuous partials i.e. if
of

Vie{l,---,n} = o2, is C°
(Cy) We say f is C? if
Vie{l n} = i is C°
’ ’ ﬁszi
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Theorem 2.15 (Clairaut). Let f: X CR™ — R with X open be C? =

o 2f  9f
Vl,j < {17 ,n} = 8xixj - 8$j$i

Proof. We take n = 2 to simplify notation so R = R2. Let (a;,as) € X. Notice that

of . flar +hy,a2) — flag,az)
8.731 (al, a2) - hlllg}O hl

Now set S = f(a1 + hi,a0 + h2) — f(al, as + hg) = f(a1 + hy, ag) + f(al,ag)

&f (a1,a2) = lim lim 75(}11’}12)
(93?281’1 e = ho—0 h1—0 hlhg
Similarly
0% f S(h1, he)

ai,as) = lim lim
8x18x2( »a2) ho—0h1—0  hihs

Set g :  — f(a1 + h1,2) — f(a1,x). Notice that S(hy, hs) = g(as + ha) — g(az). We can
apply Theorem 2.14 to g that is C* so ¢y € (ag,az + ho) s.t.
S(h1, ha) = hag'(c2)

= hy (af(ch + hy,c2) — ﬁ(al, 02)>

0zs O

Set h:xz g—é(m, ¢2) and apply Theorem 2.14 to h so I ¢; € (a1,a1 + h1) s.t.

S(h1,ha) = hihy

0
6331633‘2 (Cl’ 62)

Since ¢; € (a1,a1 + h1) and cp € (az,as + ho) and f is C? =

o’ f
6.231 6%‘2

lim S(hi,h2) 0% f
(h1,h2)—(0,0) hlhg n 6$18$2

(a1,az) = (a1, a2)

Proceeding similarly setting &k : z — f(x, a2 + he) — f(z,a2)

lim S, ha) __Of (a1,az)
(h1,h2)—(0,0) h1h2 o 8x28x1 1oz

Thus
i (a a)*LQf (a1, a2)
8.’1?2(9$1 RS = 83?18.%'2 12

.. Theorem 2.15 is true. O

Definition 2.19 (Hessian Matrix). Let f : X C R” — R with X open be twice differentiable
at © € X. The Hessian of f at x is defined as

@( ) 0%f
0z? . 0x10x,, .
V2f(z) = : : € Muxn(R)
o2 f 82
ol G oA

If f is C?2 = by Theorem 2.15 we have that Vo € X = V2f(x) is symmetric.
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Definition 2.20. We say = € X is a critical point of f if Vf(z) =0
Lemma 2.3. Let f : X C R"” — R with X open. Suppose f is differentiable. Suppose
x € X is a local minmax of f = Vf(z) =0

Proof. Let v € R™ ang g : t — f(z 4+ tv). By assumption g has a local minmax at 0 since g
is differentiable = ¢’(0) = 0. Note that

g'(0) = (Vf(z),v)
Hence Vv € R" = (V f(x),v) = 0. Thus Vf(z) =0 O

Notation. Let I C R open = C*(I,R) = {f : I — R | f* exists and is C°}

Theorem 2.16 (Taylor). Let f : I € R — R be C* on an open interval I containing
ro== VYV € I3 between zy and z s.t.

f(n) (z0)

n!

F©)

(x — )" + mrl)

f(@) = f(zo) + f'(zo)(x — o) +--- +

where the last term is the Lagrange remainder.

Intuition. We have V f(z) = 0. When can we asses V f(z) = 0 is minmax?

Theorem 2.17 (Taylor Expansion). Let f : X C R™ — R with X open. Let v € R"
2

= f(z +tv) = f(x) + UV f(2),v) + %(v, V2 f(z)v) + o(t?)

Proof. Set g(t) = f(z +tv). Note f and g are C? and by Theorem 2.16 we have

2
9t) =g(0)+t g0) +5 g"(0) +o(t?)
~—~ ——
=(Vf(z),v) =(v,V2f(z)v)
By Theorem 2.8 ¢'(t) = (V f(z + tv),v) so
N Of _
gt = g(z—&—tv)vi = (Vf(z + tv),v)
i=1 "
d of o~ Of
Tt 0, (x +tv) = ; du0m; (x + tv)v;
Thus )
#0=3 o (8 )y = (0. V(o + 1)) = (0. V24 (a))
7, at t=0
Which proves Theorem 2.17. O

Lemma 2.4 (Hessian Test). Let f : X C R™ — R with X open be s.t. Vf(z) =0

(V1) Vv e R", if z is a local min = (v, V2f(x)v) > 0

(V) Vv #£ 0= (v,V2f(x)) >0
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Proof. Recall f(z + tv) = f(z) + & (v, V2f(x)v) + o(t2)
(V1) Suppose by contradiction 3v € R s.t. (v, V2f(z)v) <0

— f(z +tv) — f(z) = %@, V2£(2)0) + o(£2)

Hence for small enough t = (v, V2f(z)v) + o(t?) < 0. Thus for ¢ small enough
f(z +tv) — f(z) < 0 = not a local minimum. Hence (v, V2f(x)v) >0

(V2) Consider inf =1 (v, V2 f(z)v). Notice that v — (v, V2f(z)v) is C° and {z € R" |
lz]] = 1} which is a unit sphere. This set is compact, hence Jvg s.t. ||vo|| =1 =

inf (v, V2f(z)v) = (vo, V2 f(x)vo)

llvll=1
This vo is the minimum. Now define ¢ := inf),=1 (v, V2 f(2)v). We deduce that
Vo st |v]| =1 = (v, Vif(z)v) = ¢
Hence . v , v
Vo#0eR" = <W,V f(x)m> > ¢

Thus V v # 0 = (v, V2f(2)v) > coljv]|* and hence

2
fla+t0) = f(z) > Seolloll® +oft?)

O(tt;) —0ast— 0= Jeo > 0 depending only on ¢y s.t. Vv € R" = |jv|| =1

and V |t| < eg = o(t?) > —%co =

Since

{2 t? 12
_ > on — —ep = —
f(a:—l—tv) f(x)/ 200 400 co >0

Indeed Vy € B(z,e0) = f(y) — f(z) > [lz — ||

2
1) - sy > 22U,

Then z is a local minimum. Note y = = + ﬁ“y — x|

Thus Lemma 2.4 is true. O

Definition 2.21. Let A € M, x,(R). A number A € R is called an eigenvalue of A if
Jv#0€eR” s.t.
Av =)\

Then v is called an eigenvector associated to .
Remark. Let A € M, xn(R) = (z,Ay) =z  (Ay) = (A z)Ty = (ATz,y)

Lemma 2.5. Let A € M,,x,(R) and A = AT

— |\iﬂ£1<x7Ax> = A\min

where Apnin is the minimal eigenvalue of A
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Proof. By Definition 2.11 A = PDP ! and since A is symmetric A = PDP "
(z,Az) = (z,PD(P"z)) = (P2, D(P " z))

Notice P = (v1,vs,...,v,) are the eigenvectors. Now y = Pz and ||y|| = |lz|| = 1 since
P’ is orthogonal. Thus

inf (z,Az)= inf (y,Dy) = inf )\i?
IIIH:1< ) Hyl\:1<y v) llyll=1 IZ Y

Clearly the infimum is for y; = £1,y2 =0,--- ,y, = 0. Thus

inf (x,Az) =X\

llzll=1

Where A; is of course the minimal eigenvalue. O

Example 2.9. Let f : (z,y) — e* + zy
Proof. Notice Vf(z,y) = (e* +y,z) and Vf(z,y) = (0,0) & x=0and y = —1

e’ 1

Vif(z,y) = (1 0) = V2f(0,-1) = G (1))

Notice now that

X(A)zdet(A_ll _Al> =A-DA-1=X2-)x-1

Notice A\; < 0 < Ag. Hence (0, —1) is neither a local max or min: it is a saddle point. O

2.5 Inverse Function Theorem

Definition 2.22. Let (X, d) be a metric space. We say that f: X — X is a contraction if
Vr,y € X = d(f(z), f(y)) < d(z,y)

We say f is a strict contraction if

Jce (0,1) st Va,y € X = d(f(z), f(y)) < c-d(z,y)
Definition 2.23. Let f: X — X. We say that « € X is a fixed point of f if f(z) ==«
Theorem 2.18 (Picard Fixed Point). Let (X, d) be a complete metric space. Let f be a strict

contraction = f has a unique fixed point.

Proof. Let us begin with uniqueness. Suppose by contradiction f(x) = z and f(y) = y. By
Definition 2.23 we have that

d(f(2), f(y)) < ¢ -dlz,y) = d(z,y) =0
=d(z,y) €(0,1)

And by (dz2) of Definition 1.1 = d(z,y) =0 <z =y.
Now we have to show existance. Let ug € X = Vn > 0 we set up11 = f(un)

= d(un-i-laun) = d(f(un)a f(un+1)) <c- d(unaun-i-l)
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Iterating gives d(upn+1,un) < ¢"d(u1,up) by induction. Let p,q > ng with g >

q—1
d(up, uq) E d(ug41,ug) < E cF d(uq,ug)
k=p

—+o0
cmo
< Z & | d(uy,w) = T % cd(ul,uo)

k}:no

"o

Fixe > 0= dn, € Ns.t. f—d(u1,up) <e¢

=Vp,q>n) = d(up,uq) <e
This means that (u,) is a Cauchy sequence, so by Definition 1.12 (u,) converges
— Jle X st. u, —> ¢
Notice f is C° since it is a contraction. If d(x,,z) — 0
= d(f(zn), f(z)) < d(zn,z) =0
Remember all Lipschitz functions are continuous. Now u,+1 = f(uy)

fisCO

But w,41 — £, so £ = f(£). This proves Theorem 2.18 O

Theorem 2.19 (Brouwer Fixed Point). Let D C R™ be a nonempty, compact, and convex
set. If f: D — D is C’ = 3 at least one point x € D such that f(x) = z.

Intuition. While no one has been able to axiomatize reality, I was able to notice Earth is a
2-sphere embedded in R3. I am currently in New York. Print a map of the city, which is of
course a shrunken version of the city, and also a continuous function f : NY — NY that sends
each point of New York to a point in the map. Then by Theorem 2.19, there exists at least one
point & € NY such that f(z) = x, a point of New York that coincides with its representation
on the map. For more information consult Borges.

Definition 2.24. Let f : A C R®™ — R. We say that f is strictly monotonic < f is either
strictly increasing or strictly decreasing, that is

flx) < f(y) if f is strictly increasing

Ve<ye A=
vy {f(:r) > f(y) 1if f is strictly decreasing

Definition 2.25 (Injective). Let f : A — B. We say that f is an injection (or one-to-one
function) <
Vi, 20 € Ast. f(z1) = f(x2) = x1 = 22

Equivalently, if z1 # 29 = f(z1) # f(z2).

Definition 2.26 (Surjective). Let f : A — B. We say that f is a surjection (or onto function)

<~
Vye Bz e Ast. f(z)=y

That is, every element of B is the image of at least one element of A under f.
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Definition 2.27 (Bijection). Let f : A — B. We say that f is a bijection < f is both
Definition 2.25 and Definition 2.26, so

Vye Balz e Ast f(z) =y.
Intuition. The motivation to have this here is the Inverse Function Theorem Suppose f : R" —
R" is C'. Suppose Df,, is invertible i.e. f’(x) # 0, which is a bijection. Now

f(@) = f(wo) + D fay (x — xo) +o([lz — 20l|)

is a bijection

We expect then locally that around zy f is a bijection, since it is strictly monotonic.
Lemma 2.6. Let g : B(0,r) CR™ — R” s.t. g(0) = 0 and for which Vz,y € B(0,r) =

lo@) — sl < 3llz vl

= f: B(0,r) = R™ with f : 2 — 2 + g(z) is an injective function and
r
5 (0.5) < s(50.)

Proof. Let z,y € B(0,7) s.t. f(x) = f(y).
v +g(z) =y +9(y) = llo—yll = |lo@) — g@)|| < = —yll

= ||z —y|| = 0 & = = y. This satisfies Definition 2.25. Now let y € (0,%). We want to
show Jx € B(0,r) s.t.

fx) =yeoz=y—g)
—~—
z+g(x)

(
We want a fixed point of F': B(0,7) — R™ with F : z — y — g(z)

HF(m)H = Hy—g(m)” < lyll + Hg(x) —g(O)H < g + @ 2

This means F'(B(0,7)) € B(0,r). Now, remember ||y|| < § hence 3¢ > 0s.t. |ly|| < 5(1—¢).
Let 2 € B[0,7(1 — ¢)] which as per Definition 1.2 is a closed ball =

|E@I < ol + 3]
<L-9)+i(l-e)=r(l—e)
Hence F(B[0,7(1 —¢€)]) € B[(0,7(1 —¢)]. Now

/ 1 !/
|F(@) - F@)| < 5lle =]

Which means F' is a strict contraction from X to itself where X = B[(0,7(1 — ¢)] is
closed. This means that it satisfies Definition 1.12 and is complete. By Theorem 2.18
Jz € B[0,r(1 — €)] s.t.

F(z) & f(z) =y =y € f(B(O,r))

This shows B (0,%) C f(B(0,r)) O
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Remark. Remember f< o f =id so

D(fH of)m =id = D(fe)f(x) onm = D(f/)f(oc) = (Dfm)e

Definition 2.28 (C!-diffeomorphism). A map f : X C R® — R" is a local C!-diffeomorphism
ifVee X3U C X opens.t. x €U and 3V CR™ open s.t. f(z) € Vst. flp: U —Vis
a bijection with a C! inverse.

Theorem 2.20 (Inverse Function). Let f : E C R® — R” be C! with E open. Let x¢ € E.
Suppose D f,, is invertible = 3U C F open s.t. g € U and V C R™ open with f(x¢) € V
s.t. f |y is a bijection i.e. f(U) = V. Hence 3 an inverse map f< : V — U that is C! on V

=>VeeV = D(f )i = Dfe)"

Proof. Since D f,, is invertible, consider the map f(z) := (D fu,)* (f(z +20) — f(20)) For
this new map f , we have f (0)=0and D fo = id. Hence, without loss of generality, we can
assume from now on that

$0=0:>f(0):f($0)=0:>Df0=id
Let g(z) = f(x) — x so that f(z) =2+ g(z)

:>Df0:id+Dg0:>D90:O=> ||Dg0||£=0
~~—

=id

Where this norm satisfies Definition 2.4, and by its continuity
1
Ir>0st. Vae B(0,7r) = ||Dg.| < 5

Let 2,y € B(0,r). Define y(t) = (1 — t)x + ty
'd
= g0()-gb) = [ F o)
S—— = 0 S~——
f) f(z) is C1

By Theorem 2.8 then £ g(v(t)) = Dg. ) (Y (1))

=9(y) —g(z) = /0 Dfyy(g — z)dt

1
1
o) ~s@l < [ [P —a)d < 3le s
| ———
<5 lly—zl

We apply Lemma 2.6 = f |, is injective and B (0, g) C f(B(0,7)). We guess and set

V=8 (0, ;) and U=B(0,r) N f- (B <0, ;))

Since U C B(0,r) = f |y: U — V is one-to-one. Moreover

YveV3azeB(0,r) st f(z)y=v=2e€B0O,r) N f(V)=U

f luv:w—v is also surjective = it is a bijection. Since the ball B (07 5) is open and f

is C° = by Theorem 2.5 f< (B (0, g)) is open, thus U is open and so is V. Now, let
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f :V = U. We have to show f* is differentiable at 0. By definition f* (x) = 0l Let
Ty €V = 0. Let yp, = [ (z,) €U.

= [/ () — 2| _ Hyn”f|(|yn)||

And since z,, = f(yn) = yn + 9(yn)
1 3
zall < llynll + lg(yn) = gO)] < llgnll + S llynll < 5 llynl
And notice that g(0) = 0 and then we have

1 1

By both of these inequalities

Slynll < llznll < Sllynll = <2
2 2 [[n]] [[n]]
Since f is differentiable at 0 with f(0) =0 and D fy = id
— £(0) = (y—0
i W - FO - -0 _
y—0 ly — 0
Which is why we can conclude
_ - _
lyn — f(yn)]| Lo | £ (20) — 2a| o
o [ is differentiable at 0 and D(f* )y = id O

Intuition. Theorem 2.20 says that if f is C! and V2 € X, the differential D, is invertible, then
f satisfies Definition 2.28. In other words, f is a local C!-diffeomorphism.

Example 2.10. F(z,y) = (e® cos, e®siny). Let us show F is a local C!-diffeomorphism.

Proof. F is C! since partials exist and are C'. We compute

oF, _ =z . OF1 _ _ x4
TFew = | 8 _ ot B oo
) 2 — T o} 2 _ LT
o e smy oy €7 CoSY

Notice det <](F)(a,7y)) =e¥ #£ 0=V (z,y) € R? = DF, ) is invertible.

By Theorem 2.5 = F is a local C!-diffeomorphism. O

Theorem 2.21. Let f : R® — R” be C! s.t. Yo € R® = Df, is invertible VV C R™ open
= f(V) is open.

Proof. Let V C R"™ be open and set y € f(V) = Jx, € V s.t. f(xg) = y. Since f is C!
and Df,, is invertible, we can apply Theorem 2.20. That is 3U C R" open s.t. g € U
and 3 W C R"™ open with f(zo) € W s.t. f |y: U — W is a bijection. Now since z¢g € V
and U we can pick U small enough such that

UCV=W=f{U)Cf(V)

But W is open and f(xzg) =y € W. Thus f(V) is open. O
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2.6 Implicit Function Theorem

Theorem 2.22 (Implicit Function). Let f : E C R® — R be C'. Let y € E s.t. f(y) = 0.
Suppose additionally that %(y) 0= IV CR"openst. y €V and 3U C R*!

open s.t. (y1, -+ ,yn) €U and 3g: U — R that is C! s.t.
{‘T ev | f(:]']) = 0} = {(xla"' axn—hg(xla"' ,zn—l) | (xla"' ,xn—l) € U}

Moreover Vj € {1,--- ,n—1} =

% (y Yn-1) = A
> W, Yn—1) = — 55
(%jj aaxfn (y)

Proof. Let F' : E — R™ with F' : (21, - ,z,) — (21, -+ ,Zpn_1, f(21,--+ ,2,)). By as-
sumption f is C' so F is C' as well. Computing the Jacobian

1 0 0 0
0 1 0 0
JF)) = : : (v)
0 0 .- 1 0
2Ly LLw - 2w L)

This matrix is invertible. Notice that det(J(F)q)) =1x---x %(y) # 0. This is because
by assumption the derivative is nonzero = DF), : R®™ — R" is invertible. By Theorem 2.20
3V C FE and W C R” open sets s.t. y € V and F(x) € W s.t. F |y: V — W is a bijection
and F: W — VisCL Let hy,--- ,hy : W = Rs.t. F©(x) = (hy, -+ ,hy)(z) withz € V

= F(F<(z)) =z = (21, ,Zn)
———
(h1(@), shn—1(2),f (B (@), o (2))))

= hi(z) = 21, ,hp_1(x) = 21 and = f(z1, -+ ,2p_1,hn(x)) = z,. Set U =
{(x1, - ,2n-1) | (1, ,2pn,,0) € W}. We want to prove the equality that was stated.

C. Let x € Vsit. f(x)=0.

:>F(.’E) eV = (lL’l,"' ,.’bnfl)
S S ——
cew

Since F' |y: V — W. By definition of U = (z1,- -+ ,z,—1) € W. Notice then
T = Fe(xla"' 7xn—1a0) = ($17"' axn—l,hn(xlv"’ ,xn—lvo)

And since g : U — R with g(x1, -+ ,2p—1) = hp(z1, - ,2n—1,0). This shows z €

{(1'1,"' ,In_l,g(l'h"' 51771—1) | (‘Tlv"' 7In—l) S U}
D.Letx e {(z1, - ,xn_1,9(1,  ,2n-1) | (x1, -+ ,xn_1) € U}. Recall that Vo' € W =
f(xlh 7l'21717hn(xl1,-~- 7‘%.;7,) :x’/ﬂ

Suppose ], # 0. If («},--- ,2),_1,0) e W =

f(x/l’ 7x{n—1vg($/17"' ’x’/ﬂ—l)) =0
Since (z1,- -+ ,xp—1) €U = (21, -+ ,2p-1,0) €W =

f(‘rla"' ,xn_l,g(z1,~~ 7‘rn—1)) =0

So then we have F< (21, ,2,-1,0) € V
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= (21, Tp-1,9(x1, - ,Zp_1)) =2 €V
Thus z € {&’ € V| f(2') = 0}. Finally V (21, ,2p-1) € U =
fl@y, - ana,9(@n, - 2no1)) =0
By Theorem 2.8, and since g is C! since F*~ is C! we have that Vj € {1,--- ,n—1} =
of of of

8Z‘j ($17"' axn—l,g(xla"' 7xn—1))+ Txn(mlv"' ,xn—lag(xla'” 71,”_1))%_7‘(1') =0
We now argue that g(yi,---,¥n—1) = Yn since (y1,---,yn) € {x € V | f(z) = 0} €
{(1'1,"' axnfhg(xl,"' ;xnfl) | (xlv"‘ 7mn71) € U} and (ylv"’ 7yn71) € U. Hence we
have g(y1, -+ ,Yn—1) = Yn. This proves Theorem 2.22. O

Example 2.11. Let f: (z,y) € R? s siny + 2y* + 22.

Proof. Let us look at £(0,0) =sin0+ 0-0* 4+ 02 = 0 and compute the partial derivative

g(m,y) =cosy + dxy’ = of

= 4-0-0°=1
By ay(O,O) cos0+4-0-0 #0

Since f is C! and 2—5(0,0) # 0 we use Theorem 2.22 to get U,V C R open s.t. 0 € U and
V,as well as ¢ : U — V that is C! s.t.
VeeU= f(z,p(x))=0

And ¢(0) = 0. Now let’s use Theorem 2.16 around 0 that is ¢(x) = ¢(0) 4+ ¢’(0)x + o(x)

= @ 0@) + 5@ e@) - ¢() =0

At x = 0 we can get that %(x,y) =y* + 2z and g—g(x,y) = cosy + 4xy3

= (0 4+2-0)4 (cos0+4-0-03)¢'(0)=0+1-¢'(0)=0= ¢'(0)=0

Thus the Taylor Expansion is p(z) =040 -z + o(x) = o(x) O

Example 2.12. Does the relation x + y + z + sin(zyz) = 0 define z as a function of z and y
in a neighborhood of the point (0,0,0)?

Proof. First let us define f(x,y,2) = x + y + z + sin(zyz) which satisfies f(0,0,0) = 0 as
required. Now let us calculate the partial derivative with respect to z

of 0 of

e + cos(xyz) % (zyz) + cos(zyz) - (zy) = e (0,0,0) =1+ cos(0)-0 #0
Thus %(0,0, 0) # 0 and we can apply Theorem 2.22 to get (0,0) € R? and z = h(z,y) s.t.
f(@,y,h(z,y)) = 0. Now

of
0z _ ot o 0z _ 3y
=79 =772
ox affzc Oy affzc
We have to get these.
of of
B 1+ cos(zyz) -2z =14+cos(0)-0=1 i 1+ cos(zyz) -yz=1+cos(0)-0=1
And %(0,0,0) = 1. Therefore 22(0,0) = —1 and g—Z(0,0) =-1 O
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2.7 Lagrange Multiplier

Intuition. Let us refresh our memory and apply Lemma 2.4 to an example.

Example 2.13. Let f(z,y) =sinz +y? — 2y +1

Proof. We want to find the critical points. Recall from Definition 2.20 that these are the
point that satisfy Vf(z) = 0. As such, let us compute the gradient.

Vi) = (5. @) =0

Where (z,y) are the critical points. This gives us the following expression
Vf(a,b) = (cosz,2y —2) =0

Thus 2y —2=0=y=1and cosr =0=VYn € N= z =7 + nn. These are the critical
points (a,b) = (§ 4+ nm,1). Now let us apply Lemma 2.4.

8 ey Ly
Ven=| B B

This matrix can be solved as follows
2 _ (—sinz 0 2, (T _(—sinf+n=—(-1)" 0
Vf(:r,y)—( 0 2>:>Vf<2+n7r,1>—< 0 9

Thus this diagonal has two options. For n even we have a saddle point, as the diagonal
does not share the same sign. If it is odd, both numbers are positive and thus the point is
a local minimum. O

Definition 2.29 (Restriction). Let f : X — Y be a function and let S C X. The restriction
of f to S, denoted f |g, is the function f |s: S — Y defined as Vo € S = f |5 (z) = f(x).

Intuition. The setup is the following. We want to maximize/minimize a function f : R” — R
under the constraint g = 0 where g : R® — R where both f, g are C*. The level set is S = {g = 0}
where Vg(z) # 0. Now V tangent vector v of S at = (v, Vg(z)) = 0. Suppose z is a local
maximum of f |g. Theorem 2.10 says V f(z) is the direction of the sharpest increase.

J a path v : (—¢,€) — S that is C! s.t. 4(0) = 2 and 7/(0) = v. Now we look at

d

2170 0) l=0= (V(4(£)):7 () ls=0= (Vf(2),v) = 0
since ||V f(z)||[|v] cos@ with 6 € (0,F) =><=. Contradiction, so that implies z is not a local
max. Impossible! Hence Vf(z) L to S at . Then the tangent plane is a hyperplane of dimn —1
and its orthogonal complement is of dim1. Vg(z) # 0. Hence 3\ € R s.t.

Vf(x) = AVg(z)

Take g(x) =0 with y =z =
9(y) = g(x) +(Vg(x),y — )
—~—
=0
Hence y = in level set if (Vg(z),y — ) = 0. So dimn — 1. Since y € R™ with one non-trivial
constraint. So, if z is an extremum of f subject to g = 0 then f cannot increase in any tangent
direction on the constraint surface, so its gradient must be parallel to that of the constraint.
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Remark. The dimension of a vector space V' is the number of vectors in a basis of V, that
is, the maximal number of linearly independent vectors in V. It is denoted by dim V.

Lemma 2.7. Suppose that x is a local minmax of f |g. Let TS be the set of vectors of
S at x. That is v € T,S if 3 > 0 and v : (—¢,6) — S that is C! s.t. v(0) = 2 and
Y (0)=v= YveT,S = (Vf(z),v) =0.

Proof. Let v € T,,S and by definition 3 v : (—¢,6) — S that is C! sit. (0) = z and
¥ (0) =v=p:t— f(y(t)) has a local minmax at 0 =

p'(0)=0
where p'(0) = (V£(7(0)),7'(0)) = (Vf(z),v) .
Definition 2.30 (Rank). Let A € M,,x,(R) The rank of A, denoted rank(A), is the di-
mension of Im(A), that is, the number of linearly independent columns (or rows) of A.
Lemma 2.8. Suppose Vg(x) # 0 = TS is a hyperplane.

Proof. Notice this is true for linear function, hence it is true for C' functions. Suppose that
;Tgn(x) # 0. By Theorem 2.22, and since Vg(z) # 0 = J open set V C R" s.t. y € V and
U C R™ open set s.t. (1, ,2n—1) €U and h: U — R s.t.

{g = 0} nvs= (yla”' 7yn717h(y1a"' 7yn71)) = graph(h)

Let’s write @ : U — R™ with @ : (y1, - ,¥n-1) = W1, ,Yn—1,h (Y1, ,Yn—1)). We
claim 7,8 = Im(D®y, ... 5. 1)) = {DPsy ... 2, _1(v) | v € R}

C. Let veT,S= Iv: (—¢e) — S that is C! s.t. y(0) = = and 7/(0) = v and
Vte (—¢ee)=~(t) e V. Since y(t) € S NV =graph(h) = ®(U) = FA(t) € U s.t.

() = (3(8), h(3(1)))
Now since 7 is C! so is 7 = 7(t) = ®(7(¢)) with ¥ and ® both C'. By Theorem 2.8 =
7' (t) = D5 ((1))
witht=0=v = Do, ... ,Inil)(ﬁ/(O)) € Im(D(I)(Ih... ,In71))
D. Letw € Im(D®y, ... 5, 1)) = Fw R st v=DP,, ... o ,)(w). Let 3(t) = T+tw.

Set
v(t) = (7(), h(3(2)))

The for € > 0 small enough V¢ € (—¢,e) = H(t) € U. Hence v(t) € S N V and Vi €
(—e,e) = 7(t) = ®(7(t)). Then by Theorem 2.8 = 7/(0) = D®,, ... 5. )(7(0) = w) = v.
Hence v € TS by definition. Thus 73,5 = Im(D®(,, ... ,,_,)) is a vector space

1 0 0
0 1 0
TPy, zny) = (1, Tp_1)
Oh Ok . Oh
Jy1  Oy2 OYn—1

= @Y1, ¥n—1) = W1, s Yn—1,M¥1, -+ ,Yn—1)). Now since D®, .., .y R
R™ the rank is n — 1, since the column vectors are linearly independent. Hence dim 7S =
n — 1. This proves Lemma 2.8. O
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Theorem 2.23 (Lagrange). Let f,g: R™ — R be C!. Let = be a local minmax of f | with
S = {g =0}. Suppose Vg(z) #0 = I A € R s.t.

Vf(z) = AVg(z)
Proof. Notice that dim(7,S)* =n —dim7,S =n— (n—1) = 1. So
At ={v|Yaec A= (v,a) =0}
And Vg(x) € (T,,S)* the gradient orthogonal to the level set sine Vg(z) # 0. So (Vg(x))
is a basis of (T,5)T = by Lemma 2.8 = Vf(z) € (T,,S)1. Hence Vf(x) = A\Vg(z) for
some A € R. This proves Theorem 2.23. O
Example 2.14. f(z,y) = 2% — y%. Optimize on S = {(z,y) | g(z,y) = 2® —y*> — 1 =0}

Proof. Let (z,y) be a local minmax on f |s. So f, g are C! = Vg(z,y) = (2z,2y) # 0 since
2?2 — 3?2 = 1. By Theorem 2.23 3\ € R s.t.

Vf(z,y) = AVg(z,y) = (22, —2y) = A(27,2y)

Noticez = Az = 2z(A—1)=0=z=0o0orA=1. Ifz =0= y+1so0 (0,1) and (0,—1)
are candidates. If A\ =1 = —2y =2y = y = 0 so x = +1 and (—1,0) and (1,0) are also
candidates. Since f is C° = S is compact. Hence f |g is bounded and attains both min
and max.

f(:l:l,O) =3 and f(O,:I:l) =3
| —_——
global maxima of f|g global minima of f|g
This solves the exercise. ]

Theorem 2.24. Let S = {z € R™ | ||z|| = 1} be the unit sphere, and let f : R” — R
be differentiable. Suppose that the restriction of f to S is constant =— F zy € R™ with
lzoll < 1s.t. Vf(zo) =0

Proof. Define g(z) = ||z]|> = 1. Then S = {z | g(x) = 0} and Vg(x) = 2z. Since f is
constant on S Jcs.t. Vo €= Sf(xr) = c. Hence each x € S is an extremum of f|g. By
Theorem 2.23 Vax € S3 )N, € R s.t.

Vf(z) = Vg(z) =2\
Take inner product with z and use ||z|| = 1
(Vf(z),z) = 2As
Define ¢, : (=1,1) = R by ¢, (t) = f(tx). By Theorem 2.8
0o (t) = (Vf(tz), z) = ¢, (1) = (Vf(2),2) = 2Xs

But ¢, is constant at ¢ = 1 (since f is constant on S) = ¢, (1) = 0. Thus A\, = 0 and
therefore
VeeS=Vf(z)=0

Since Va € S = Vf(x) =0, define F(z) = x—V f(x). Then F(z) = z on S, so F maps the
closed unit ball B = {z | ||z|| < 1} into itself. By Theorem 2.19, 3z¢ € B s.t. F(xg) = xo.
Hence Vf(zg) =0. If ||xg]| = 1 = 29 € S, otherwise ||zo|| < 1. Either way, x¢ exists. O

Remark. f(a(t),b(t)) = v(t) = 7' (t) = a’(t) 2L (a(t), b(t)) +b'(t)% (a(t), b(t)) (Theorem 2.8)
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2.7. LAGRANGE MULTIPLIER CHAPTER 2. DIFFERENTIATION ON R™ — R™

Definition 2.31. Let T : V — W be a linear map between vector spaces. The kernel of T’
is the set of all vectors in V' that are mapped to the zero vector in W, that is

ker(T)={v eV |T(v) =0}
Theorem 2.25 (Lagrange). Let f : R® — R be C! and g1, ,gm : R® — R also C* with

m<n. Set S={g1=0,---,9m = 0}. Let = be a local minmax of f |s. Suppose that
Vg1 (x), -+ Vgm(x) are linearly independent —>

Vi(x) = MVa(z)+ XVeg(z)+ -+ AnVgm(z)

for some Ay, Ao, -+, A €R
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Chapter 3

Measure Theory

3.1 Preliminaries

Intuition. There are several motivations for this. One of those is we want to integrate functions
that are not smooth i.e. functions where we cannot integrate under Riemann integral.

1 fze@Q
1p = .
0 ifzeR\Q

is an example of such a function: it is not Riemann integrable on [0, 1]. Another motivation is
to build a theory closed under limit = Vn € N we have f,, integrable and f,, — f. For Riemann
integral f is not integrable. For Lebesgue integral it is. This is what we will construct. We are
also interested in constructing a notion of volume of A C R?. For R? we have area, and for R
we have length. Finally, another motivation is taking a point at random between 0 and 1. That
is, constructing a probability measure on [0,1] i.e.

P(X € A) = |4]
where X is a random point. There exists no such thing, a probability measure s.t. we can
compute VA C [0,1] = P(X € A). The set of A s.t. we can compute P(X € A) is called the set
of measurable sets of [0, 1]. The Lebesgue measure is defined on A C ([0, 1]) called Borelian.
Definition 3.1 (Rectangle). A closed rectangle in R? is a set of the form
la1,b1] X [az,b2] X - - - [aq, ba]

with a1 < by ---aq < bg. An open rectangle in R? is a set of the form

(al,bl) X (ag,bz) X ---(ad,bd)

with a1 < by ---aq < by.
A cube in R? is a rectangle s.t. by —a; = -+ = bg — aq

Definition 3.2 (Volume). We define the volume of an open or closed rectangle R to be

n

IR =[] (b — a:)

=1
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3.1. PRELIMINARIES CHAPTER 3. MEASURE THEORY

Definition 3.3 (Open Set). A set O C R?is openis Vo € O Je € Rt s.t.

B(x,e) CO
Intuition. For d = 1 = (a,b) is open. Any union of open sets is open i.e. (—oo,a) U (b,o0)
| Remark. Z is countable if |Z| < oo or if 7 is in bijection with N

Theorem 3.1. Let O C R be open = O can be decomposed into a countable union of open
(non-empty) disjoint intervals. Moreover, this decomposition is unique.
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