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Chapter 1

Power Series

1.1 Preamble

These are notes from the Fall 2025 Intro to Modern Analysis II class from Dr. Jeanne Boursier
at Columbia University. The textbook for this course was Analysis II by Terence Tao.

1.2 Series of Functions

Definition 1.1 (Metric Space). Let X be a non-empty set. Let d : X ×X → R : ∪ : 0 be a
function. We say that d is a metric or distance on X ⇔ d satisfies the following properties

(d1) ∀ x, y ∈ X ⇒ d(x, y) ⩾ 0

(d2) d(x, y) = 0⇔ x = y

(d3) ∀ x, y ∈ X ⇒ d(x, y) = d(y, x)

(d4) ∀ x, y, z ∈ X ⇒ d(x, z) ⩽ d(x, y) + d(y, z)

A metric space is an ordered pair (X, d) where X is non-empty and d is a metric on X.

Definition 1.2. Let (X, d) be a metric space, x ∈ X, and r ∈ R+. The open ball of center
x and radius r is defined as

B(x, r) = {y ∈ X | d(x, y) < r}

The closed ball of center x and radius r is defined as

B[x, r] = {y ∈ X | d(x, y) ⩽ r}

Definition 1.3. Let (X, d) be a metric space and A ⊆ X. A point x ∈ X is called an
adherent point of A if for every ε > 0⇒ the open ball B(x, ε) intersects A.

B(x, ε) ∩ A ̸= ∅

Definition 1.4. Let (X, d) and (Y, ρ) be metric spaces ⇒ the set of continuous functions of
X in Y is defined as

C0(X,Y ) = {f : X → Y | f is continuous }
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1.2. SERIES OF FUNCTIONS CHAPTER 1. POWER SERIES

Notation. In this text, we adopt the following convention for arrows

⇒ is the colloquial word then =⇒ is the formal logical implies

Definition 1.5 (Limiting Value). Let (X, d) and (Y, ρ) be metric spaces. Let E ⊆ X, and let
f : E → Y be a function. If x0 ∈ X is an adherent point of E and L ∈ Y we say

lim
x ∈ E→x0

f(x) = L

and say f(x) converges to L in Y as x converges to x0 in E if

∀ ε > 0 ∃ δ > 0 ∀ x ∈ E ⇒ 0 < d(x, x0) < δ =⇒ ρ(f(x), L) < ε

Intuition. We are working our way to limits of sequences of functions to explore the concept of
power series. We will now define two notions of convergence: uniform and pointwise.

Definition 1.6 (Uniform Convergence). Let X be a non-empty set and (Y, ρ) a metric space.
We say that a sequence of functions

⟨fn : X → Y | n ∈ N⟩ or (fn : X → Y )n∈N

converges uniformly to a function f : X → Y ⇔

∀ ε > 0 ∃N ∈ N ∀ n ⩾ N ∀ x ∈ X ⇒ ρ(fn(x), f(x)) < ε

Notation. In this case we write fn ⇒ f , where f is the uniform limit of the sequence.

Definition 1.7 (Pointwise Convergence). Let X be any non-empty set and (Y, ρ) a metric
space. We say that a sequence of functions

⟨fn : X → Y | n ∈ N⟩ or (fn : X → Y )n∈N

converges pointwise to the function f : X → Y ⇔ ∀ x ∈ X ⇒

lim
n→∞

fn(x) = f(x)

in the space (Y, ρ)

Notation. We say fn → f , where f is the pointwise limit of the sequence (fn)n∈N

Definition 1.8 (Series). Let (X, d) be a metric space. Let (fn)∞n=1 be a sequence of functions
fn : X → R, and let f : X → R. If the partial sums

SN (x) =

N∑
k=1

fk(x)

converge pointwise to f(x) as N →∞, we say that the series

∞∑
n=1

fn(x)

converges pointwise on X to f . For converging uniformly it is very similar.
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1.2. SERIES OF FUNCTIONS CHAPTER 1. POWER SERIES

Definition 1.9. Let
∑

fn be a series of functions defined on a set A ⊆ R. It is said to be
absolutely convergent if for every x ∈ A, the series

∑
|fn(x)| converges.

Remark. If
∑

fn converges absolutely =⇒
∑

fn converges,

Theorem 1.1. Let fn be differentiable. Suppose ∃xo s.t. fn(x0) converges and f ′n ⇒ g =⇒
fn → f differentiable with f ′ = g

Theorem 1.2 (Weierstrass M-test). Let (X, d) be a metric space. Let (fn)∞n=1 be a sequence
of bounded continuous functions fn : X → R such that

∞∑
n=1

∥fn∥∞ <∞

⇒
∑∞

n=1 fn converges uniformly to a function f : X → R, and f is continuous on X

Proof. Fix x ∈ X. Note that ∣∣fn(x)∣∣ ⩽ sup
y∈X

Hence
∑∣∣fn(x)∣∣ converges =⇒

∑
fn(x) converges pointwise

f(x) =

∞∑
n=0

fn(x) =⇒

∣∣∣∣∣∣f(x)−
N∑

n=0

fn(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

n=N+1

fn(x)

∣∣∣∣∣∣ ⩽
∞∑

n=N+1

∥fn∥∞

Which implies ∥∥∥∥∥∥f −
∞∑

n=0

fn

∥∥∥∥∥∥
∞

⩽
∞∑

n=N+1

∥fn∥∞ ⇒ 0

as N →∞

Theorem 1.3 (Root Test). Let
∑∞

n=1 an be a series of real or complex numbers and set

ℓ := lim sup
n→∞

n
√
|an|

If ℓ < 1 =⇒
∑∞

n=1 an converges absolutely and converges. If ℓ > 1 =⇒
∑∞

n=1 an diverges.
If ℓ = 1 =⇒ the series may be divergent, conditionally convergent, or absolutely convergent.

Proof. Suppose ℓ > 1⇒ ∀N ∃ n ⩾ N s.t.

|an| ⩾
1 + ℓ

2︸ ︷︷ ︸
<ℓ

⩾

(
1 + ℓ

2

)n

> 1

But |an| → +∞⇒ |an| ̸→ 0. Thus
∑∞

n=1 an diverges. Suppose ℓ < 1⇒ ∃N ∀ n ⩾ N s.t.

|an|
1
n <

1 + ℓ

2
=⇒ |an|︸︷︷︸

⩾0

<

(
1 + ℓ

2

)n

=⇒
∞∑

n=1

(
1 + ℓ

2

)n

converges

Thus
∑∞

n=1 an converges.
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Remark. lim sup always exists ∈ R+ ∪ {+∞}

Theorem 1.4. If ∀ n ∈ N =⇒ fn is C0 and if (fn) ⇒ f =⇒ f is C0

Theorem 1.5. If ∀ n ∈ N =⇒ fn is C0 and if (fn) ⇒ f =⇒ ∀ [a, b] ⊆ X =⇒∫ b

a

f = lim
n

∫ b

a

fn =

∫ b

a

lim
n

fn

1.3 Power Series

Definition 1.10 (Formal Power Series). Let a ∈ R and let (cn)n∈N ∈ RN ⇒

∞∑
n=0

cn(x− a)n

is called a formal power series centered at a

Remark. We don´t assume Definition 1.10 converges.

Example 1.1.
∑

xnan with a ∈ R+ converges ⇔ |x| < 1
a

Definition 1.11 (Cauchy). (fm) with fm : X → R is called a Cauchy sequence if

∀ ε > 0 ∃N ∈ N s.t. m,n ⩾ N ⇒ |fm(x)− fn(x)| < ε

Remark. This notion can be generalized to a metric space (X, d) and a sequence (xn)n∈N

∀ n,m ∃N ∈ N s.t. ∀ n,m ⩾ N =⇒ d(xn, xm) < ε

Theorem 1.6. If (X, d) is a metric space, every convergent sequence in (X, d) is Cauchy.

Proof. Suppose that (xn)n∈N is a sequence in X that converges to an element x0 ∈ X. Let
ε > 0 be arbitrary. By convergence, ∃N ∈ N such that ∀ n ⩾ N such that d(xn, x0) <

ε
2 .

Hence, ∀ n,m ⩾ N we have

d(xn, xm) ⩽ d(xn, x0) + d(x0, xm) <
ε

2
+

ε

2
= ε

∴ (xn)n∈N is Cauchy.

Definition 1.12. We say that a space (X, d) is a complete metric space ⇔ every Cauchy
sequence in (X, d) converges to an element in (X, d).

Definition 1.13 (Radius). Let
∑∞

n=0 cn(x− a)n satisfy Definition 1.10 ⇒

R :=
1

lim supn→∞ |cn|
1
n

is defined as the radius of convergence of said series
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1.3. POWER SERIES CHAPTER 1. POWER SERIES

Theorem 1.7. Let
∑∞

n anx
n be a formal power series with radius of convergence R⇒

R = sup{ρ ⩾ 0 | (anρn)n∈N is bounded}.

Proof. Let r ∈ R+ and recall Definition 1.13 ⇒ taking
∑∞

n=0 anr
n means by Theorem 1.10

that anr
n → 0 and as such

∑∞
n=0 anr

n is bounded ⇒

{ρ ⩾ 0 | (anρn) is bounded} ⊇ {r ⩾ 0 |
∞∑

n=0

anr
n converges in R}

Conversely, if (anρn) is bounded ∃ M ∈ R+ s.t. ∀ n ∈ N⇒ |anρn| ⩽ M

⇒ ∀ r < ρ⇒ |anrn| = |anρn|
(
r

ρ

)n

⩽ M

(
r

ρ

)n

By the comparison test
∑∞

n=0 anr
n converges in R⇒

{ρ ⩾ 0 | (anρn) is bounded} ⊆ {r ⩾ 0 |
∞∑

n=0

anr
n converges in R}

∴ Theorem 1.7 is true since we have shown the sets are equal.

Theorem 1.8. Let
∑∞

n⩾0 cn(x− a)n with radius of convergence R ∈ R

(C1) If |x− a| < R =⇒
∑∞

n⩾0 cn(x− a)n converges absolutely.

(C2) If |x− a| > R =⇒
∑∞

n⩾0 cn(x− a)n diverges.

Proof. Notice that at R and a−R anything can happen. Set

lim sup
n

(
|cn||x− a|n

) 1
n = lim sup

n
|cn|

1
n |x− a| = 1

R
|x− a|

We apply Theorem 1.3 to obtain the result.

Theorem 1.9. Let
∑∞

n⩾0 cn(x− a)n with radius R ∈ R+. Let x ∈ (a− r, a+ r) and set

f(x) =

+∞∑
n=0

cn(x− a)n

(f1) ∀ r ∈ (0, R) =⇒
∑

n cn(x− a)n converges uniformly on [a− r, a+ r].

In particular f(x) is C0 on (a− r, a+ r)

(f2) ∀ r ∈ (0, R) =⇒
∑

n ncn(x− a)n−1 converges uniformly on [a− r, a+ r] and

∀ x ∈ (a− r, a+ r) =⇒ f ′(x) =

+∞∑
n=0

ncn(x− a)n−1

So, in particular, f is differentiable

(f3) Let [y, x] ⊆ (a−R, a+R) =⇒∫ z

y

f =

+∞∑
n=0

cn
(z − a)n+1 − (y − a)n+1

n+ 1
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Proof. Let us prove this result

(f1) Let r ∈ (0, R)
sup

x∈[a−r,a+r]

∣∣cn(x− a)n
∣∣ ⩽ |cn|rn

If we apply Theorem 1.2, since r < R =⇒
∑∞

n=1 |cn|rn converges. Hence

∞∑
n=1

sup
x∈[a−r,a+r]

∣∣cn(x− a)n
∣∣ converges

And thus
∑∞

n=1 cn(x−a)n converges uniformly on [a−r, a+r] and so ∀r ∈ (0, R)⇒ f
is C0 on (a− r, a+ r), so it is C0 on (a−R, a+R)

(f2) Set un(x) = xn(x − a)n ⇒ u′n = cnn(x − a)n−1 and
∑

u′n is the power series with
radius of convergence

R′ =
1

lim supn(|cn+1n|)
1
n

Notice
∑

u′n = (cn+1)(n+ 1)(x− a)n. Now since

1

(n+ 1)
1
n

→ 1 =⇒ R′ = R =
1

lim supn |cn|
1
n

So they have the same radius of convergence. Thus
∑

u′n converges uniformly on
[a− r, a+ r] by (f1). Moreover

∑
un converges uniformly on [a− r, a+ r]. Applying

Theorem 1.1 so f is differentiable on (a− r, a+ r) and ∀ x ∈ (x− r, x+ r) where

f ′(x) =

+∞∑
n=0

u′n(x)

(f3)
∑

n un converges uniformly on [y, z] by (f1) so ∀ n ∈ N⇒ un is C0 hence∫ z

y

f(t)dt =

+∞∑
n=0

∫ z

y

un(t)dt

Thus Theorem 1.9 is true.

Theorem 1.10. Let V = (V, ∥ · ∥) be a normed vector space and let (vk) be a sequence in
V . If the series

∞∑
k=1

vk

converges in V ⇒ vk → 0 in V . In particular, the sequence (vk) is bounded.

1.4 Real-Analytic Functions

Definition 1.14 (Real-Analytic Function). Let f : E ⊆ R→ R and a ∈ E . We say that f is
real-analytic at a ⇐⇒ ∃ r ∈ R+ and (cn)n∈N ∈ RN s.t.

∀ x ∈ (a− r, a+ r) =⇒ f(x) =

∞∑
n=0

cn(x− a)n

Suppose E is open. Then f is real-analytic if it is real analytic at a ∀ a ∈ E
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1.4. REAL-ANALYTIC FUNCTIONS CHAPTER 1. POWER SERIES

Notation. RN is the set of sequences taking values in R

Corollary. By (f1) and (f2) of Theorem 1.9 if f is real analytic at a ⇒ f is both C0 and
differentiable on (a− r, a+ r) for some r ∈ R+

Theorem 1.11. Let I ⊂ R be an interval and f ∈ C∞(I). Suppose there exists a sequence
of pairwise distinct points (xn) ⊂ I with xn → a ∈ I and f(xn) = 0 for all n.

(A1) ∀ a ∈ I ⊆ R⇒ f(a) = 0.

(A2) ∀ k ⩾ 1⇒ f (k)(a) = 0.

(A3) Suppose additionally that f is real-analytic on I =⇒ f ≡ 0 on I.

Proof. We attempt to show this is true.

(A1) Since f is continuous and xn → a⇒

f(a) = lim
n→∞

f(xn) = lim
n→∞

0 = 0

(A2) Fix k ⩾ 1 and ε ∈ R+. Choose y1, . . . , yk+1 ∈ (a− ε, a+ ε) with (yj , yj+1) ⊆ I s.t.

∀ j = 1, . . . , k + 1⇒ f(yj) = 0

We can do this because of (A1) of Theorem 1.11. By Theorem 2.2 there exist

z1, . . . , zk ∈ (yj , yj+1) and ∀ j = 1, . . . , k ⇒ f ′(zj) = 0

Iterating by Theorem 2.2 again we have that

w1, . . . , wk−1 ∈ (zj , zj+1) and ∀ j = 1, . . . , k − 1⇒ f ′′(wj) = 0

and so on until the k-th derivative. Letting ε→ 0⇒ f (k)(a) = 0 by continuity.

(A3) Since f now satisfies Definition 1.14 we have for x ∈ (a− ρ, a+ ρ) where ρ ∈ R+

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

From (A1) and (A2) of Theorem 1.11 we have ∀ k ⇒ f (k)(a) = 0 so ∀ x ⇒ f(x) = 0
and by continuity ∀ x ∈ [a − ρ, a + ρ] ⇒ f(x) = 0. Let H be the set of all intervals
ℓ ⊆ I such that a ∈ ℓ and ∀ x ∈ ℓ⇒ f(x) = 0. Define U :=

⋃
ℓ∈H ℓ.

We claim U = I. Assume by contradiction U ⊊ I. Then the union of disjoint intervals
U are closed since f is continuous. Let c be the endpoint of some ℓ ∈ U . Choose a
sequence (xn)n∈N ⊆ U s.t. lim

n→∞
xn = c.

Since ∀ n ∈ N⇒ f(xn) = 0, by (A1) and (A2) we have ∀ k ⩾ 0⇒ f (k)(c) = 0

f(x) =

∞∑
n=0

f (n)(c)

n!
(x− c)n ≡ 0 for x ∈ (c− ξ, c+ ξ)

Because of Definition 1.14 for some ξ > 0. Hence the interval containing c can be
extended beyond c⇒⇐. Therefore U = I, so f ≡ 0 on I.

∴ Theorem 1.11 is true.
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Theorem 1.12. Let f : E ⊆ R be real analytic at a =⇒ ∀ k ⇒ f is k times differentiable at
a. Moreover ∃ r > 0 s.t. ∀ k ∈ N⇒

f (k)(x) =

∞∑
n⩾k

cn · n(n− 1) · · · (n− k + 1)(x− a)n−k

Proof. r is where around a we expand to power series ∃ r > 0 s.t. ∀ x ∈ (a− r, a+ r) =⇒

f(x) =

+∞∑
n=0

cn(x− a)n︸ ︷︷ ︸
un

In particular the radius of convergence of this series is larger than r i.e. R ⩾ r. Then
∀ k ∈ N⇒ the radius of convergence of

∑
u
(k)
n is R. Hence by (f1) of Theorem 1.9 we have

that
∑

u
(k)
n converges uniformly on every compact set included in (a− r, a+ r). Since it is

true ∀ k we get that f is C∞ and that ∀ x ∈ (a− r, a+ r) =⇒

f (k)(x) =

∞∑
n⩾k

cn · n(n− 1) · · · (n− k + 1)(x− a)n−k

Thus Theorem 1.12 is true.

Corollary. Let f : E → R be real analytic =⇒ f is C∞ and all derivatives are analytic.

Proof. By Theorem 1.12

Corollary (Taylor’s Formula). Let f : E → R be real analytic at a ∈ E. Let r > 0 and
(cn) ∈ RN be s.t.

∀ x ∈ (a− r, a+ r)⇒ f(x) =

+∞∑
n=0

cn(x− a)n

=⇒ ∀ n ⩾ 0⇒

cn =
f (n)(a)

n!

Theorem 1.13. Let a > 0. Let f : [−a, a]→ R be C∞ and suppose there exist C,A > 0 s.t.

∀ n ∈ N⇒ ∥f (n)∥∞ := sup
x∈[−a,a]

|f (n)(x)| ⩽ CAnn!

=⇒ f admits a power series expansion at 0, i.e., f is real-analytic at 0.

Proof. By Taylor Remainder Theorem we have for any x ∈ [−a, a] and n ∈ N

f(x) =

N∑
k=0

f (k)(0)

k!
xk +RN (x)

where RN (x) = f(N+1)(ξ)
(N+1)! xN+1. Since ξ ∈ [−a, a]⇒

|f (N+1)(ξ)| ⩽ ∥f (N+1)∥∞ ⩽ CAN+1(N + 1)!

And note that we can bound RN (x)

|RN (x)| ⩽ CAN+1(N + 1)!

(N + 1)!
|x|N+1 = C(A|x|)N+1
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1.5. ABEL’S THEOREM CHAPTER 1. POWER SERIES

Fix x s.t. |x| < 1
A . Let ε > 0 and pick M s.t. C(A|x|)M+1 < ε since A|x| < 1⇒

∀ N ⩾ M ⇒ |RN (x)| ⩽ C(A|x|)N+1 ⩽ C(A|x|)M+1 < ε

Hence lim
N→∞

RN (x) = 0. Therefore

f(x) = lim
N→∞

N∑
k=0

f (k)(0)

k!
xk

for every |x| < min
(
a, 1

A

)
. This proves f is real-analytic at 0 as it satisfies Definition 1.14

1.5 Abel’s Theorem

Intuition. An Abelian theorem proposes that when there is convergence of the series, the original
object, then the regularized object behaves well. A Tauberian theorem says that if the regularized
object behaves well and we add some condition, then the original object will converge.

Lemma 1.1. Let
∑+∞

n=0 cnx
n have radius of convergence 1. Let

Sn =

n∑
k=0

ck

=⇒ ∀ x ∈ (−1, 1)⇒
+∞∑
k=0

ckx
k = (1− x)

+∞∑
k=0

Skx
k

Proof. We start by rewriting ck. Note that ∀ k ⇒

ck = Sk − Sk−1 with S−1 = 0

Now we can add to these terms the finite sumns of xk ⇒

N∑
k=0

ckx
k =

N∑
k=0

Skx
k −

N∑
k=0

Sk−1x
k

︸ ︷︷ ︸∑N
k=1 Sk−1

And therefore this last term can be rewritten as

N∑
k=1

Sk−1x
k =

N−1∑
k=0

Skx
k+1

Substituting this into our original equation gives

N∑
k=0

ckx
k =

N−1∑
k=0

Sk (x
k − xk+1)︸ ︷︷ ︸
xk(1−x)

+SNxN

Since by assumption (SN ) converges by Theorem 1.10 it is bounded and for x ∈ (−1, 1)

SNxN −−−−−→
N→+∞

0

Thus
∑N

k=0 Skx
k(1− x) converges and Lemma 1.1 is true.

Remark.
∑+∞

k=0 akx
k −

∑+∞
k=0 ak =

∑n
k=0 ak(x

k − 1) + (x− 1)
∑+∞

k=0 Rmxk +Rm(xn+1 − 1)

10



1.5. ABEL’S THEOREM CHAPTER 1. POWER SERIES

Theorem 1.14 (Abel). Let f be a power series centered at a with radius of convergence
R ∈ R+. If f converges at x = a+R =⇒ f is C0 at a+R and

lim
x→(a+R)−

f(x) = f(a+R) =

∞∑
m=0

cmRm

Proof. We will take the case where a = 0 and R = 1. By Lemma 1.1 for x ∈ (−1, 1)⇒

+∞∑
k=0

ckx
k = (1− x)

+∞∑
k=0

Skx
k

Notice that the term Sk

Sk =

+∞∑
k=0

ck − Rk︸︷︷︸
remainder

with Rk =

+∞∑
n=k+1

cn

Set S∞ :=
∑+∞

k=0 ck and so Sk = S∞ −Rk

⇒
+∞∑
k=0

ckx
k = (1− x)

+∞∑
k=0

(S∞ −Rk)x
k =

Since
∑+∞

k=0 x
k converges we have that

= S∞(1− x)

+∞∑
k=0

xk − (1− x)

+∞∑
k=0

Rkx
k = S∞ − (1− x)

+∞∑
k=0

Rkx
k

Let us show that

lim
x→1−

(1− x)

+∞∑
k=0

Rkx
k

︸ ︷︷ ︸
error(x)

Let ε > 0⇒ ∃ k0 s.t. ∀ k ⩾ k0 ⇒ |Rk| < ε. Notice

error(x) = (1− x)

+∞∑
k<k0

Rkx
k + (1− x)

+∞∑
k⩾k0

Rkx
k

First for x ∈ (0, 1)⇒

(1− x)

+∞∑
k⩾k0

xk ⩽
1

1− x
=⇒

∣∣∣∣∣∣(1− x)

+∞∑
k⩾k0

Rkx
k

∣∣∣∣∣∣ ⩽ ε

Since k0 is fixed ∃ δ > 0 s.t. ∀ x ∈ (1− δ, 1)⇒∣∣∣∣∣∣(1− x)

+∞∑
k<k0

Rkx
k

∣∣∣∣∣∣ ⩽ ε =⇒
∣∣error(x)

∣∣ ⩽ 2ε

Hence lim
x→1−

error(x) = 0. Thus

lim
x→1−

+∞∑
k=0

ckx
k =

+∞∑
k=0

ck

This proves Theorem 1.14.

11
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Theorem 1.15 (Cesaro). Let (uk) be a sequence that converges and suppose uk → L ∈ R =⇒

1

n

n∑
k=1

uk → L ∈ R

Proof. Let ε > 0. Since uk → L ∃ k0 s.t. ∀ k ⩾ k0 ⇒ |uk − L| < ε n∑
k=1

uk

− nL =

n∑
k=1

(uk − L) =

k0−1∑
k=1

(uk − L) +

n∑
k=k0

(uk − L)

Notice the following∣∣∣∣∣∣
n∑

k=k0

(uk − L)

∣∣∣∣∣∣ ⩽ n · ε =⇒

∣∣∣∣∣∣ 1n
n∑

k=1

uk − L

∣∣∣∣∣∣ ⩽ 1

n

k0−1∑
k=1

|uk − L|+ ε · n
n

Now ∃ k1 ⩾ k0 s.t.

∀ n ⩾ k1 =⇒ 1

n

k0−1∑
k=1

|uk − L| < ε

Hence ∀ ε > 0 ∃ k0 s.t. ∀ n ⩾ k1 ⇒∣∣∣∣∣∣ 1n
n∑

k=1

uk − L

∣∣∣∣∣∣ ⩽ 2ε =⇒ 1

n

n∑
k=1

uk −−−−−→
n→+∞

L

This proves Theorem 1.15.

Example 1.2. Consider the power series

f(x) =

∞∑
n=1

(−1)n+1

n(2n+ 1)
x2n+1.

(P1) What is its radius of convergence R? Is there convergence at the endpoints?

(P2) On what interval is f a priori continuous? Prove that it is continuous on [−R,R].

(P3) Express, using standard elementary functions, the sum of the series obtained by dif-
ferentiating term by term on (−R,R). Deduce an expression for f on (−R,R).

(P4) Compute
∞∑

n=1

(−1)n+1

n(2n+ 1)
.

Proof. Let us try to solve this exercise

(P1) By Definition 1.10 we have that

R =
1

lim supn→∞
(

1
2n

) 1
n

⩽
1

lim supn→∞

(
1

2n2+n

) 1
n

⩽
1

lim supn→∞
(

1
3n2

) 1
n

= 1

Thus R = 1. There is convergence at both endpoints ±1 by the alternating series test
because terms decrease in absolute value to zero.

(P2) We know that f is a priori continuous on (−1, 1). By Theorem 1.14 since it converges,
it is continuous on the closed interval [−1, 1].

12
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(P3) Let us try to do this. Notice the derivative is

f ′(x) =

∞∑
n=1

(−1)n+1

n(2n+ 1)
· (2n+ 1)x2n =

∞∑
n=1

(−1)n+1

n
x2n = ln

(
1 + x2

)
︸ ︷︷ ︸

Newton–Mercator

Let us integrate to find f

f(x) =

∫
ln
(
1 + x2

)
dx+ C

= x ln
(
1 + x2

)
− 2x+ 2arctan(x) + C

This is how to deduce an expression for f

(P4) I used Wolfram 14.2 to compute this as I was running out of time.

ln 2 +
π

2
− 2

∴ we have partly solved Example 1.2.

Theorem 1.16 (Weak Tauber). Let
∑+∞

n⩾0 anx
n be a power series with radius of convergence

1, and let f be its sum on (−1, 1). Suppose lim
x→1−

f(x) exists and an = o( 1n ) =⇒ the series∑∞
k=0 ak converges and

lim
n→∞

Sn = lim
x→1−

f(x)

where Sn =
∑n

k=0 ak.

Proof. Remember that

Sn − f(x) =

n∑
k=0

ak −
∞∑
k=0

akx
k =

n∑
k=0

ak −

 n∑
k=0

akx
k +

∞∑
k=n+1

akx
k


=

n∑
k=0

ak(1− xk)−
∞∑

k=n+1

akx
k

=

n∑
k=1

ak(1− xk)︸ ︷︷ ︸
k=0 vanishes

−
∞∑

k=n+1

akx
k

We know 0 < x < 1 ⇒ 1 − xk = (1 − x)(1 + x + x2 + · · · + xk−1) ⩽ (1 − x)k. We take
absolute value in the previous equation and observe

|Sn − f(x)| ⩽
n∑

k=1

|ak||1− xk|+
∞∑

k=n+1

|ak|xk

⩽ (1− x)

n∑
k=1

k|ak|︸ ︷︷ ︸
from step (T2)

+

∞∑
k=n+1

|ak|xk

Now notice that since 1 = k
k ⩽ k

n

|ak|xk =
k|ak|xk

k
⩽

k|ak|xk

n

13
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Which we can apply to our previous inequality

|Sn − f(x)| ⩽ (1− x)

n∑
k=0

k|ak|+
∞∑

k=n+1

k|ak|xk

n

Now remember the following fact from the geometric series

∞∑
k=n+1

xk =
xn+1

1− x
⩽

1

1− x

Applying this to the previous equation by first noting

∞∑
k=n+1

k|ak|xk

n
⩽

supk>n k|ak|
n

∞∑
k=n+1

xk ⩽
supk>n k|ak|
n(1− x)︸ ︷︷ ︸

by geometric series

Now since an = o
(
1
n

)
we can see

lim
n→∞

sup
k>n

k|ak| = 0 =⇒ lim
n→∞

Sn = lim
x→1−

f(x)

Because as x → 1− and 1 − x → 0, so by choosing x close to 1 and n large enough, both
terms on the right tend to zero.

1.6 log and exp

Definition 1.15 (Exponential). ∀ x ∈ R we define the exponential function as

exp(x) =

+∞∑
n=0

xn

n!
∈ R

Remark. If z ∈ C and if M ∈Mn×n(R)⇒

exp(x) =

+∞∑
n=0

xn

n!
and exp(M) =

+∞∑
n=0

Mn

n!

respectively. Note that exp(M + N) = exp(M) exp(N)⇔MN = NM

Intuition. It might seem counterintuitive, but we will use the inverse of the exponential, the
logarithm function to prove some of the properties of the exponential, before even defining it.

Remark (Stirling). log n! = n · log n− n+O(log n). See Definition 2.5.

Theorem 1.17. The exponential in Definition 1.15 has the following properties

(e1) exp has radius of convergence R = +∞

(e2) ∀ x ∈ R =⇒ exp′(x) = exp(x)

(e3) ∀ x, y ∈ R =⇒ exp(x+ y) = exp(x) exp(y)

(e4) ∀ x ∈ R =⇒ exp(x) ⩾ 0

(e5) ∀ x ∈ R =⇒ exp(−x) = 1
exp(x)

14
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Proof. Let us prove Theorem 1.17

(e1) Define an = 1
n! . Notice

n! ⩾

⌊
n

2

⌋⌊n
2 ⌋

Now we take log in both sides

log n! ⩾

⌊
n

2

⌋
log

⌊
n

2

⌋
⇒ 1

n
log n! ⩾

1

n

⌊
n

2

⌋
log

⌊
n

2

⌋
∼ 1

2
log

n

2

Let n→ +∞. Clearly the right side → +∞

1

n
log n!→ +∞ =⇒ (n!)

1
n → +∞

Thus R = +∞

(e2) exp is differentiable by Theorem 1.12. Let us differentiate term by term in the open
interval of convergence. ∀ x ∈ R⇒

exp′(x) =

+∞∑
n=0

nxn−1

n!
=

+∞∑
n=1

nxn−1

n!
=

+∞∑
n=1

xn−1

(n− 1)!
=

+∞∑
n=0

xn

n!
= exp(x)

(e3) We take the following

exp(x) exp(y) =

+∞∑
k1=0

xk1

k1!

+∞∑
k2=0

xk2

k2!
⇒ 1

k1!k2!
=

(
k1 + k2

k1

)
1

(k1 + k2)!

Since both series are absolutely convergent

+∞∑
k1,k2=0

xk1xk2

k1!k2!

is also absolutely convergent ⇒

exp(x) exp(y) =
+∞∑

k1,k2=0

xk1xk2

(
k1 + k2

k1

)
1

(k1 + k2)!

=

+∞∑
n=0

+∞∑
k1,k2=0

xk1yk2

(
n

k1

)
1

n!

When we set k1 + k2 = n and as such k2 = n− k1

+∞∑
k1+k2=n

xk1xk2

(
n

k1

)
=

n∑
k1=0

xk1yn−k1

(
n

k1

)
= (x+ y)n

Adding this result to the previous equality

exp(x) exp(y) =

+∞∑
n=0

1

n!
(x+ y)n = exp(x+ y)

15



1.6. log AND exp CHAPTER 1. POWER SERIES

(e4) If x ⩾ 0⇒ exp(x) ⩾ 1 > 0. Let x < 0 and set x = −a with a ∈ R+ ⇒

exp(x) =

+∞∑
n=0

(−1)n

n!
· an

This is an alternating series hence exp(x) > 0 which is the sign of the first term.

(e5) Since exp(0) = 1⇒ set y = x

1 = exp(x− x) = exp(x) exp(−x)

This because of (e3) of this Theorem.

=⇒ 1

exp(x)
= exp(−x)

This proves Theorem 1.17.

Definition 1.16 (Logarithm). We define the natural logarithm function ln = log : (0,∞)→
R to be the inverse of Definition 1.15. Thus exp

(
log(x)

)
= x and log

(
exp(x)

)
= x.

Notation. We refer to the identity matrix and function by the same notation id

Example 1.3. Let n ⩾ 1 =⇒ ∃ α > 0 s.t. ∀A ∈ Mn×n(R) with ∥A− id∥ < α =⇒ ∃B ∈
Mn×n(R) s.t. A = exp(B).

Proof. Let X ∈Mn×n(R) s.t. ∥X∥ < 1. Consider the following power series expansion

log(id + X) =

∞∑
k=1

(−1)k+1Xk

k

This series converges because of the following

∞∑
k=1

∥∥∥∥∥(−1)k+1Xk

k

∥∥∥∥∥ ⩽
∞∑
k=1

∥X∥k

k
<∞

Define α := 1⇒ ∀A ∈Mn×n(R) with ∥A− id∥ < α, set X := A− id so that ∥X∥ < 1.

Define B := log(A) :=

∞∑
k=1

(−1)k+1 (A− id)k

k

And by Definition 1.16 exp(B) = A

Lemma 1.2. ∀ x ∈ R =⇒ exp(x) = exp(1)
x

Proof. Let f(x) = exp(x). Then f(x + y) = f(x)f(y) and f is C0. We show ∀ n ∈ N =⇒
f(n) = f(1)n. For n = 1 trivial. Suppose f(n) = f(1)n ⇒

f(n+ 1) = f(n)f(1) = f(1)n+1

=⇒ f(n) = f(1)n ∀ n ∈ N. For n ∈ Z, f(−n)f(n) = f(0) = 1 =⇒ f(−n) = f(1)−n. For
q = p

m ∈ Q we have the following expression

f(q)m = f(mq) = f(p) = f(1)p =⇒ f(q) = f(1)
p
m = f(1)q

Since f is C0 ⇒ ∀ x ∈ R =⇒ f(x) = f(1)x

16
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Theorem 1.18. ∀ x ∈ (−1, 1) =⇒

log(1− x) = −
+∞∑
n=1

xn

n!

is convergent

Proof. ∀ x ∈ R+ ⇒ log′(x) = 1
x . Notice that

∀ t ∈ (−1, 1) =⇒ 1

1− x
=

+∞∑
n=0

tn

Radius of convergence is 1. Hence since [0, x] ⊆ (−1, 1) we have∫ x

0

1

1− t
dt =

+∞∑
n=0

∫ x

0

tndt

And then we have

− log(1− x) =

+∞∑
n=0

xn+1

n+ 1
=

+∞∑
n=1

xn

n

Hence log(1− x) = −
∑+∞

n=1
xn

n

1.7 Complex Analysis

Intuition. We now will do
∑

anz
n for z ∈ C and an ∈ R

Definition 1.17. Let z = x+ iy ∈ C. The real part of z is defined by

R(z) = x

and the imaginary part of z is defined by

I(z) = y

Lemma 1.3. Let
∑

n⩾0 anz
n be a power series with radius of convergence R ∈ [0,+∞]

(c1) ∀ z ∈ C with |z| < R =⇒
∑

n⩾0 anz
n converges absolutely

(c2) ∀ z ∈ C with |z| > R =⇒
∑

n⩾0 anz
n diverges

Theorem 1.19 (Cauchy Formula). Let r ∈ (0, R) =⇒

an =
1

2π

∫ 2π

0

f(reiθ)e−inθdθ

Proof. Observe ∀ k ∈ Z ̸= 0 and for k = 0∫ 2π

0

eikθdθ = 0 and
∫ 2π

0

eikθdθ = 2π

respectively. Now we can do the following

f(reiθ) =
∑
n

rnane
inθ

17
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f(reiθ)e−inθ =
∑
n

rnane
i(n−m)θ

And notice n− n = k. Now take the integral∫ 2π

0

f(reiθ)e−inθdθ = rnan

∫ 2π

0

ei(n−m)θdθ = rnan2π

This somehow proves the result.

Corollary (Liouville). Suppose R = +∞. Suppose f is bounded on C⇒ f is constant.

Proof. First for n ̸= 0. ∣∣fn(0)
∣∣ ⩽ 1

rn
2π

2π
sup |f |

True of every r > 0. Letting r → +∞ gives

∀ n ⩾ 1 =⇒ f (n)(0) = 0⇒ ∀ n ⩾ 1 =⇒ an =
fn(0)

n!
= 0

∴ f is constant.

Definition 1.18. Let (X, d) be a metric space. Let A ⊆ X. We define the boundary of A as

∂A = A ∩Ac

where A denotes the closure of A and Ac its complement.

Theorem 1.20 (Liouville). Let f : Rn → R be C0 s.t. ∀ x ∈ Rn and r > 0 =⇒

f(x) =
1∣∣∂B(x, r)

∣∣ ∫
∂B(x,r)

f

We say that f has the mean value property ⇒ if f is bounded =⇒ f is constant.

Proof. Take n = 2 as it doesn’t change anything.

=⇒ ∀ x ∈ R2 and r ∈ R+ ⇒ f(x) =
1∣∣B(x, r)

∣∣ ∫
B(x,r)

f

Now notice the following∣∣f(x)− f(y)
∣∣ ⩽ ∫

B(x,r)\B(y,r) ∪ B(y,r)\B(x,r)

|f | 1∣∣B(0, r)
∣∣

For R ⩾ 100 · ∥x− y∥ for instance we have that∣∣f(x)− f(y)
∣∣ ⩽ 1∣∣B(0, r)

∣∣ sup |f | ·Area(B(x,R) \B(y,R) ∪ B(y,R) \B(x,R))

⩽
1∣∣B(0, r)

∣∣ sup |f | · c ·R|x− y|

for some constant c ∈ R+ universal∣∣B(0, R)
∣∣ = πR2 ⇒ ∃ c > 0 s.t.

∣∣f(x)− f(y)
∣∣ ⩽ c · ∥x− y∥

R

And then R→ +∞ =⇒ f(x) = f(y) ·R.

18
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Notation. For d ⩾ 1, we denote

Zd = {(x1, . . . , xd) | ∀ i = 1, . . . , d⇒ xi ∈ Z }.

Definition 1.19 (Harmonic). Let f : Zd → R. We say f is harmonic if

∀ v ∈ Zd =⇒ f(v) =
1

2d

d∑
i=1

(f(v + ei) + f(v − ei))

Theorem 1.21 (Liouville). Let f be harmonic on Zd and bounded =⇒ f is constant.

Theorem 1.22 (Liouville-Improvement). Take d = 2 and suppose f is harmonic on the lattice
Z2 and bounded on 99.9999999% of Z2 =⇒ f is constant.

Remark. Not true on Zd for d ⩾ 3. Wow! This is a recent result.

Definition 1.20. Let A ⊆ R. The density of A is defined by

δ(A) = lim
R→+∞

|A ∩ [−R,R]|
|[−R,R]|

whenever the limit exists.
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Chapter 2

Differentiation on Rn→ Rm

2.1 Derivatives on R

Intuition. Suppose a function f : R→ R. Let x0 ∈ R. The goal is to approximate f around x0

by a linear affine function
x 7→ ax+ b

What is a, b? We want f(x) ≃ ax+ b for x ≃ x0 ⇒ f(x0) = ax0 + b. Hence

f(x) ≃ a(x− x0) + f(x0)

f(x)− f(x0) ≃ a(x− x0)

f(x)− f(x0)

x− x0
≃ a+ something small

And as such we have
a = lim

x→x0

f(x)− f(x0)

x− x0
= f ′(x0)

Definition 2.1 (Derivative). Let I be open and a ∈ I ⇒ f is differentiable at a if

lim
x→a

f(x)− f(a)

x− a

exists. When it does, we call it the derivative of f at a

Notation. The derivative in Definition 2.1 is denoted a f ′(a)

Remark. The best linear approximation of f around a is x 7→ f(a)+f ′(a)(x−a), that is, the
tangent to the curve at a. More generally, near a we have the second-order approximation

f(x) ≃ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·

Definition 2.2. Let I be open. Let f : I → R and a ∈ I. We say a is the local min of f if

∃ r ∈ R+ s.t. ∀ x ∈ (a− r, a+ r) ⊆ I ⇒ f(x) ⩾ f(a)

the local max is the same analogously.

Notation. This is the same as saying ∃ ε ∈ R+ s.t. ∀ y ∈ B(x, ε) =⇒ f(y) ⩾ f(x)
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Theorem 2.1. Let I be open. Let f : I → R and a ∈ I. Let a be a local minmax of f .
Suppose f is differentiable at a⇒ f ′(a) = 0

Proof. Take x ∈ (a, a+ r). Let us look at

f(x)− f(a)

x− a︸ ︷︷ ︸
>0

⩾ 0 for r small enough

⇒ f ′(a) = lim
x→a

f(x)− f(a)

x− a
⩾ 0

Similarly, if one takes x ∈ (a− r, a)⇒

f(x)− f(a)

x− a︸ ︷︷ ︸
<0

⩽ 0 for r small enough

⇒ f ′(a) = lim
x→a

f(x)− f(a)

x− a
⩽ 0

∴ f ′(a) = 0.

Theorem 2.2 (Rolle’s). Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b).
Suppose f(a) = f(b)⇒ ∃ c ∈ (a, b) s.t. f ′(c) = 0.

Proof. If f is constant⇒ f ′(x) = 0. Otherwise, suppose f attains a minimum or maximum
at c ∈ (a, b)⇒ c satisfies Definition 2.2 of f on (a, b), and by Theorem 2.1⇒ f ′(c) = 0.

Theorem 2.3 (Mean Value). Let f : [a, b] → R continuous and differentiable on (a, b) ⇒
∃ c ∈ (a, b) s.t.

f ′(c) =
f(b)− f(a)

b− a

Proof. Let f(x) and we construct a linear function

ℓ(x) = f(a) +
f(b)− f(a)

b− a
(x− a)

⇒ L(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a) = f(x)− ℓ(x)

Notice L(a) = 0 = L(b)⇒ by Theorem 2.2 ∃ c ∈ (a, b) s.t. L′(c) = 0

L′(c) = 0 = f ′(c)− f(b)− f(a)

b− a
=⇒ f ′(c) =

f(b)− f(a)

b− a

∴ Theorem 2.3 is true.

Corollary. If f ′ = 0 on (a, b) =⇒ f is constant

Proof. By Theorem 2.3 ∃ c ∈ (a, b) s.t.

f ′(c) =
f(b)− f(a)

b− a
= 0

But this means f(b)− f(a) = 0⇒ f(b) = f(a). Hence f is constant.
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Corollary. Let f : R→ R continuous and differentiable on R \ {0}. Suppose that f ′(x) has
limit ℓ as x 7→ 0 where x ̸= 0⇒ f is differentiable at 0 and f ′(0) = ℓ

Proof. Take x ̸= 0

f ′(c) =
f(x)− f(0)

x− 0

for some cx s.t. |c| < |x|. Now since

f ′(y) −−−→
y→0

ℓ and cx −−−→
x→0

0

⇒ f ′(cx) = ℓ⇒ lim
x→0

f(x)− f(0)

x− 0
= ℓ

∴ f is differentiable at 0 and f ′(0) = ℓ

2.2 Derivatives on Rn

Intuition. Take f : Rn → Rm. Let x0 ∈ Rn. We want to approximate f by a linear affine
function around x0

x 7→ Ax+ b

where b ∈ Rn and A ∈Mm×n(R). We want f(x0) = Ax0 + b. Hence we want a matrix s.t.

f(x) ≃ f(x0) + A(x− x0)

Definition 2.3 (Norm). Let V be a vector space over R. A norm on V is a function ∥·∥ :
V → R that satisfies the following properties

(N1) ∀ x ∈ V ⇒ ∥x∥ ⩾ 0

(N2) ∥x∥ = 0⇔ x = 0⃗, where 0⃗ is the additive identity of V

(N3) ∀ x ∈ V and ∀ λ ∈ R⇒ ∥λx∥ = |λ|∥x∥

(N4) ∀ x, y ∈ V ⇒ ∥x+ y∥ ⩽ ∥x∥+ ∥y∥

Definition 2.4. Let L be the space of linear maps between normed vector spaces. The norm
on L defined by

∀ L ∈ L ⇒ ∥L∥L := sup
x ̸=0

∥∥L(x)∥∥
∥x∥

is called the subordinate norm.

Example 2.1. The subordinate norm ∥L∥L is a norm in L

Proof. Let us show this is a norm

(N1) Since ∥L∥L is a fraction of two norms who are already ⩾ 0⇒ ∥L∥L ⩾ 0

(N2) ∥L∥L = 0⇔ supx ̸=0
∥L(x)∥
∥x∥ ⇔

∥∥L(x)∥∥ = 0⇔ L(x) = 0

(N3) Let λ ∈ R

∥λL∥L = sup
x̸=0

∥∥λL(x)∥∥
∥x∥

= sup
x ̸=0

|λ|
∥∥L(x)∥∥
∥x∥

= |λ| sup
x̸=0

∥∥L(x)∥∥
∥x∥

= |λ|∥L∥L
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(N4) Let L, T ∈ L ⇒ ∀ x ̸= 0⇒∥∥(L+ T )(x)
∥∥

∥x∥
⩽

∥∥L(x)∥∥
∥x∥

+

∥∥T (x)∥∥
∥x∥

=⇒︸︷︷︸
take sup

∥L+ T∥L ⩽ ∥L∥L + ∥T∥L

∴ the subordinate norm ∥L∥L is a norm in L.

Remark. All norms are equivalent on Rn

Definition 2.5 (Landau). Consider two norms on Rn and Rm both denoted by ∥·∥

(O1) Let a, b : Rn → Rm. We say that

a(x) = ox0(b(x))

if ∃ ε > 0 and c : B(x0, ε)→ R s.t.∥∥a(x)∥∥ = c(x) ·
∥∥b(x)∥∥

with c(x)→ 0 as ∥x− x0∥ → 0

(O2) We say a(x) = Ox0
(b(x)) if ∃ ε > 0 and M > 0 s.t. ∀ x ∈ B(x0, ε)⇒∥∥a(x)∥∥ ⩽ M ·

∥∥b(x)∥∥
Notation. This is known as Landau or Big O notation

Definition 2.6 (Fréchet Derivative). Let X ⊆ Rn be open. Let f : X → Rm. Let a ∈ X.
We say f is Fréchet differentiable at a if ∃ a linear map L : Rn → Rm s.t.

f(x) = f(a) + L(x− a) + oa(x− a)

Equivalently we can also say

lim
x→a

∥∥f(x)− f(a)− L(x− a)
∥∥

∥x− a∥
= 0

We call L the derivative of f at a and denote it by DFa

Remark. ε(x) = oa(x− a) if ∥ε(x)∥∥x−a∥ −−−−−−→∥x−a∥→0
0

Example 2.2. Let f : Rn → Rm where f : x 7→ ⟨u, x⟩ with u ∈ Rn

Proof. Let us show that

f(x+ h) = ⟨u, x+ h⟩ = ⟨u, x⟩+ ⟨u, h⟩
= f(x) + ⟨u, h⟩
= f(x) + f(h)︸︷︷︸

linear

+ o(∥h∥)︸ ︷︷ ︸
ox(h)

By Definition 2.6 ⇒ f is differentiable and ∀ x ∈ Rn ⇒ Dfx = f

Example 2.3. Let f : Rn → Rm with f : x 7→ ⟨x,Ax⟩, where A ∈Mn×n(R)
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Proof. Let us take

f(x+ h) = ⟨x+ h,A(x+ h)⟩
= ⟨x,Ax⟩+ ⟨h,Ax⟩+ ⟨x,Ah⟩+ ⟨h,Ah⟩

Set L(h) = ⟨h,Ax⟩+ ⟨x,Ah⟩

⇒ f(x+ h) = f(x) + L(h) + ⟨h,Ah⟩

We have to show ⟨h,Ah⟩ satisfies (O)1 of Definition 2.5.

⟨h,Ah⟩ =
∑

hihjAij∣∣⟨h,Ah⟩
∣∣ ⩽ max

i,j

∣∣Aij

∣∣ (∑ |hi|
)2

Take ∥h∥ =
∑n

i=1 |hi|. Hence, for λ ∈ R2 ⇒

∣∣⟨h,Ah⟩
∣∣ ⩽ λ · ∥h∥2 ⇒

∣∣⟨h,Ah⟩
∣∣

∥h∥
−−−→
h→0

0

Hence ⟨h,Ah⟩ = ox(h). Thus

f(x+ h) = f(x) + L(h) + ox(h)

Thus, the derivative of f at x is Dfx(h) = ⟨h,Ax⟩+ ⟨x,Ah⟩.

Notation. We denote by

Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ is a bijection}

the set of all permutations of {1, . . . , n}

Example 2.4. Let f :Mn×n(R)→ R where M 7→ det(M)

Proof. Let σ ∈ Sn. Define sgn(σ) as

sgn(σ) =

{
+1 if σ is even
−1 if σ is odd

The determinant of M ∈Mn×n(R) is then defined by

det(M) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

miσ(i)

Notice that sgn(σ) = (−1)N(σ) where N(σ) is the number of inversions

N(σ) = #{x < y | σ(x) > σ(y)}

Now, by multilinearity and antisymmetry of det we have

det(id + H) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

(id + H)iσ(i)︸ ︷︷ ︸
(id)iσ(i)︸ ︷︷ ︸

1σ(i)=i

+Hiσ(i)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

(1σ(i)=i + Hiσ(i))
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If σ = id
n∏

i=1

(1σ(i)=i + Hiσ(i)) =

n∏
i=1

(1 + Hii) =
∑

E⊆{1,...,n}

∏
i∈E

Hii

=⇒ 1︸︷︷︸
E=∅

+

n∑
i=1

Hii︸ ︷︷ ︸
|E|=1

+ o(∥H∥2)︸ ︷︷ ︸
|E|⩾2

Hence when σ ̸= id⇒ ∃ i ̸= j s.t. σ(i) ̸= i and σ(j) ̸= j. Hence

n∏
k=1

( 1σ(k)=k︸ ︷︷ ︸
0 for k=j and i

+Hkσ(k)) = o(∥H∥2)

Hence

det(M) = sgn(id)︸ ︷︷ ︸
=1

(1 + trace(H) + o(∥H∥2))

= det(id) + trace(H) + o(∥H∥2)
= det(id) + trace(H) + o(∥H∥)

Which is a coarser asymptotic.

Intuition. This is the derivative. A linear approximation and a remainder.

Notation. When F : X ⊆ Rn → Rm we have F = (f1, ..., fm)

Theorem 2.4. Let F : X ⊆ Rn → Rm with X open.

(F1) ∀ a ∈ X ⇒ F is differentiable at a =⇒ F is C0 at a

(F2) F constant =⇒ F is differentiable with derivative zero.

(F3) F linear =⇒ F is differentiable and ∀ a ∈ X ⇒ DFa = F

(F4) F,G differentiable at a =⇒ F +G differentiable at a

(F5) F differentiable ⇔ fi differentiable at a ∀ i ∈ {1, ...,m}

Proof. Let us prove Theorem 2.4

(F1) Let us remember that F (a+ h) = F (a) +DFa(h) + ε(h) with

ε(h)

∥h∥
−−−→
h→0

0 hence ε(h) −−−→
h→0

0

Now L(h) is linear, and because of finite dimensions, it is continuous

L(h) −−−→
h→0

L(0) = 0 thus F (a+ h) −−−→
h→0

F (a)

which makes F continuous at a

(F2) Notice the following

F (x+ h) = F (x) = c

= F (x) + L(h) + 0 = c+ L(h)

Which means ∀ h⇒ L(h) = 0. Hence F is differentiable and ∀ x⇒ DFx = 0
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(F3) The proof is the same as (F2)

(F4) The proof is allegedly very simple

(F5) For the norm of Rn choose
∥x∥∞ = max

1⩽i⩽n
|xi|

=⇒ Suppose F is differentiable at a and let A = DFa with A = (ℓ1 · · · ℓm).

Now notice the following∥∥F (x+ h)− F (x)−A(h)
∥∥ = max

i⩽1⩽n

∣∣fi(x+ h)− fi(x)− ℓi(h)
∣∣

By assumption of F ∥∥F (x+ h)− F (x)−A(h)
∥∥

∥h∥
→ 0

Hence ∀ i ∈ {1, ...,m} we have that∣∣fi(x+ h)− fi(x)− ℓi(h)
∣∣

∥h∥
→ 0

Hence fi is differentiable with derivative ℓi

⇐= is the same proof as the necessity.

∴ Theorem 2.4 is true.

Notation. For a square matrix M ∈Mn×n(R) and an integer p ⩾ 1, we define

Mp = MM · · · M︸ ︷︷ ︸
p times

.

Definition 2.7. A norm ∥ · ∥ onMn×n(R) is sub-multiplicative if

∀A,B ∈Mn×n(R)⇒ ∥AB∥ ⩽ ∥A∥ ∥B∥

Example 2.5. Let p ⩾ 1 and n ⩾ 1. Let f :Mn×n(R) −→Mn×n(R) with M 7−→Mp

Proof. Let us show that

(M + H)p = Mp + LM(H) + o(∥H∥)

We start by expanding

(M+H)p = Mp +

p−1∑
k=0

MkH(M+H)p−1−k

= Mp +

p−1∑
k=0

MkHMp−1−k

︸ ︷︷ ︸
LM(H)

+ R(H)︸ ︷︷ ︸
Remainder

Which means we need to show the following is true

R(H) = (M+H)p −Mp − LM(H) =

p−1∑
k=0

Mk H
(
(M+H) p−1−k −M p−1−k

)
= o(∥H∥)
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Fixing q ⩾ 1 we expand this take norm from Definition 2.4 that satisfies Definition 2.7

∥∥(M+H)q −Mq
∥∥ ⩽ Cq

q∑
j=1

∥H∥j ⇒
∥∥R(H)

∥∥ ⩽ C∥H∥2

Notice that
∥(M+H)p −Mp − LM(H)∥

∥H∥
⩽ C∥H∥ −−−−−→

∥H∥→0
0

Thus f is differentiable.

Definition 2.8. The inverse image of B ⊆ Y under the function f : X → Y is the set

f←[B] := {x ∈ X | f(x) ∈ B}

Theorem 2.5. Let (X, d), (Y, ρ) and f : X → X. The following are equivalent:

(o1) f is continuous

(o2) ∀W open in (Y, ρ) ⇒ f←[W ] is open in (X, d)

(o3) ∀ F closed in (Y, ρ) ⇒ f←[F ] is closed in (X, d)

Proof. (o1) =⇒ (o2) Let W be any open subset of Y . Let x ∈ f←[W ]. Since W is open,
∃ ε > 0 s.t. Bρ(f(x), ε) ⊆W . Since we assumed f is continuous at x,

∃ δ > 0 s.t ∀ z ∈ X, d(x, z) < δ ⇒ ρ(f(x), f(z)) < ε

Observe that Bd(x, δ) ⊆ f←[W ]. Take z ∈ B(x, δ), which implies

f(z) ∈ Bρ(f(x), ε) ⊆W

(o2) =⇒ (o3). Suppose F ⊆ Y is any closed set. Then Y \F is open in Y . By the previous
implication, f←[Y \ F ] is open in X. Moreover, note that

f←[Y \ F ] = f←[Y ] \ f←[F ] = X \ f←[F ]

But this set is open, so its complement ∴ f←[F ] is closed in X.

(o3) =⇒ (o1) Suppose x ∈ X is any element and ε > 0 is arbitrary. Consider B(f(x), ε),
which is open in Y , since all balls are open. Then Y \ B(f(x), ε) is closed in Y . By (o2),
f←[Y \B(f(x), ε)] is closed in X, and moreover,

f←[Y \B(f(x), ε)] = f←[Y ] \ f←[B(f(x), ε)] = X \ f←[B(f(x), ε)]

⇒ f←[B(f(x), ε)] is open in X ⇒ x ∈ f←[B(f(x), ε)], and since it is open

∃ δ > 0 s.t. B(x, δ) ⊆ f←[B(f(x), ε)]

It follows that
f [B(x, δ)] ⊆ f←[B(f(x), ε)]

Indeed, suppose z ∈ f [B(x, δ)] is arbitrary.

⇒ ∃ y ∈ B(x, δ) s.t. z = f(y)⇒ y ∈ f←[B(f(x), ε)]

Then f(y) ∈ B(f(x), ε), but f(y) = z, which proves the inclusion

f [B(x, δ)] ⊆ f←[B(f(x), ε)]

∴ f is continuous at x, and it follows that f is continuous on all of X.
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Definition 2.9. Let (V, ⟨·, ·⟩) be an inner product space. We define the norm of x ∈ V as
the number ∈ R

∥x∥ :=
√
⟨x, x⟩

Note that ∥·∥ : V → R is a function.

Lemma 2.1. The set of invertible matrices Gn×n(R) ⊆Mn×n(R) and is open.

Proof. Remember the set of invertible matrices is

Gn×n(R) = {M ∈Mn×n(R) | det(M) ̸= 0}

We know det is continuous and R \ {0} to be open on R.

Gn×n(R) = det←(R \ {0})

By (o2) of Theorem 2.5 ⇒ Gn×n(R) is open since it is the inverse image of an open set.

Example 2.6. Let g : Gn×n(R)→ Gn×n(R) with M 7−→M−1

Proof. We know from Lemma 2.1 that Gn×n(R) is open in Mn×n(R). Now

M 7→M−1

is a rational function, so it is differentiable. We have

(X+H)−1 = X−1(I+HX−1)−1

Then we have u = HX−1 with ∥u∥ < 1 and

(I+ u)−1 =

∞∑
n=0

(−1)nun

=⇒ (X+H)−1 = X−1−X−1HX−1︸ ︷︷ ︸
LX(H)

+o(∥H∥2)

Which is the linear map we need from Definition 2.6

∴ Dg(X)(H) = −X−1HX−1 is the derivative of this function.

Definition 2.10. For (λ1, . . . , λn) ∈ Rn, we define

diag(λ1, . . . , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


the diagonal matrix inMn(R) whose diagonal entries are λ1, . . . , λn

Definition 2.11. A matrix M ∈ Mn×n(R) is said to be diagonalizable if there exists an
invertible matrix P ∈Mn×n(R) and a diagonal matrix D ∈Mn×n(R) such that

M = PDP−1

where D = diag(λ1, λ2, . . . , λn)
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Definition 2.12 (Partial Derivative). Let f : X ⊆ Rn → R with X open. We call partial
derivative of f at a ∈ X w.r.t. xi the limit

lim
h→0

f(a+ hei)− f(a)

h

whenever it exists, and is denoted by
∂f

∂xi
(a)

Remark.

ei =



0
...
1
...
0


i-th entry←−

Definition 2.13 (Directional Derivative). Let f : X ⊆ Rn → R with X open. Let v ∈ Rn.
We call directional derivative of f at a ∈ X along v the limit

lim
h→0

f(a+ hv)− f(a)

h

whenever it exists.

Lemma 2.2. Let f : X ⊆ Rn → R with X open. Suppose f is differentiable at a =⇒ the
directional derivative exists and ∀ v ∈ R⋉

lim
h→0

f(a+ hv)− f(a)

h
= Dfa(v)

In particular ∀ {1, ..., n} ⇒
∂f

∂xi
(a) = Dfa(ei)

Proof. We have f(a+ tv︸︷︷︸
h

) = f(a) +Dfa(h) + ε(h) where

ε(h)

∥h∥
→ 0 and ∥h∥ = |t|∥v∥

ε(h)

|t|
−−−→
t→0

0 =⇒ ε(h) = o(t)⇒ f(a+ tv) = f(a) + tDfa(v) + o(t)

Hence
f(a+ tv)− f(a)

t
= Dfa(v) +

o(t)

t
−−−→
t→0

Dfa(v)

So the directional derivative exists and equals Dfa(v)

Example 2.7. Let f : R2 → R defined by

f(x, y) =

{
y2

x if x ̸= 0

y if x = 0

f has directional derivatives in every direction at (0, 0), yet is not continuous at this point.
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Proof. Let v = (v1, v2) ∈ R2. Consider from Definition 2.13 the directional derivative

lim
h→0

f(0 + hv1, 0 + hv2)− f(0, 0)

h

The first case is v1 ̸= 0

f(hv1, hv2)− f(0, 0)

h
=

(hv2)
2

hv1
− 0

h
=

h2v2
2

hv1

h
=

hv22
hv1

=
v22
v1

Second case is v1 = 0
f(0, hv2)− f(0, 0)

h
=

hv2 − 0

h
= v2

So the directional derivatives are v2
2

v1
, v1 ̸= 0

v2, v1 = 0

Now suppose f were continuous at 0. Then for ε = 1
2 ∃ δ s.t.√

x2 + y2 < δ =⇒ |f(x, y)− f(0, 0)| < 1

2

Consider y = x1/2 which means f(x, x1/2) = 1 so√
x2 + y2 =

√
x2 + x < δ ⇒ |f(x, x1/2)− f(0, 0)| = |1− 0| = 1 ̸< 1

2

Which means f is not continuous at (0, 0) while having directional derivatives.

Corollary. Let f : X ⊆ Rn → Rm with X open. Let a ∈ X. Suppose f is differentiable at a

Ja(f) :=MBc(Dfa) =


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

. . .
...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)


where Ja(f) is called the Jacobian matrix

Proof. Let L : Rn → Rm. Now

MBc
(L) =


L1(e1) · · · L1(en)

...
. . .

...
Lm(e1) · · · Lm(en)


Therefore (MBc

(L))ij = ⟨L(ej), ei⟩

L = Dfa(ej) =


D(f1)a(ej)

...
D(fm)a(ej)


And by Lemma 2.2 we have that

⟨Dfa(ej), ei⟩ = D(fi)a(ej) =
∂fi
∂xj

(a)

Thus MBc
(Dfa)ij = Ja(f)ij = ∂fi

∂xj
(a)
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Notation.MBc(L) denotes the matrix of L : Rn → Rm in the canonical bases

Theorem 2.6. Let f : X ⊆ Rn → Rm. Let a ∈ X. Suppose the partials exist on B(a, ε) for
some ε ∈ R+ and suppose that ∀ i ∈ {1, ...,m} and ∂f

∂xi
is C0 at a⇒ f is differentiable at a

Proof. Let us consider the case m = 2 so a = (a1, a2)

f(a1 + h1, a2 + h2)− f(a1, a2) =f(a1 + h1, a2 + h2)− f(a1, a2 + h2)

+ f(a1, a2 + h2) + f(a1, a2)

For
∥∥(h1, h2)

∥∥ small enough we have x 7→ f(x, a2 + h2) differentiable on [a1, a1 + h1].

By Theorem 2.3 ∃ c1 ∈ (a1, a1 + h1) s.t.

f(a1 + h1, a2 + h2)− f(a1, a2 + h2) = h1
∂f

∂x
(c1, a2 + h2)

Similarly ∃ c2 ∈ (a2, a2 + h2) s.t.

f(a1, a2 + h2)− f(a1, a2) = h2
∂f

∂y
(a1, c2)

Thus
f(a1 + h1, a2 + h2)− f(a1, a2) = h1

∂f

∂x
(c1, a2 + h2) + h2

∂f

∂y
(a1, c2)

Since (x, y) 7→ ∂f
∂x (x, y) is C0 at (a1, a2)

∂f

∂x
(c1, a2 + h2) =

∂f

∂x
(a1, a2) + o(1)︸︷︷︸

h→0

Since (x, y) 7→ ∂f
∂y (x, y) is C0 at (a1, a2)

∂f

∂y
(a1, c2) =

∂f

∂y
(a1, a2) + o(1)︸︷︷︸

h→0

Thus

f(a1 + h1, a2 + h2)−f(a1, a2) =

h1
∂f

∂x
(a1, a2) + h2

∂f

∂y
(a1, a2) + h1o(1) + h2o(1)︸ ︷︷ ︸

ε(h)

ε(h)

∥h∥
−−−→
h→0

0 and ∥h∥ ⩾ 1

c
max(|h1|, |h2|)

Thus

f(a1 + h1, a2 + h2)−f(a1, a2) =

h1
∂f

∂x
(a1, a2) + h2

∂f

∂y
(a1, a2) + o(∥h∥)

∴ f is differentiable. ε(h) = o(1) and ε(h)
1 → 0

Remark. We deduce from Theorem 2.6 that polynomials are differentiable.

Example 2.8. Let f : R2 → R with f : (x, y) 7→ xy + x2
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Proof. Let us look at the tangent plane to the graph of f at (1, 1)

∂f

∂x
= y + 2x and

∂f

∂y
= x

Which by Definition 2.12 are the relevant partial derivatives. At (1, 1)

∂f

∂x
= 1 + 2 · 1 = 3 and

∂f

∂y
= 1

We know the equation for a tangent plane at (1, 1) is

z − f(1, 1) =
∂f

∂x
(x− 1) +

∂f

∂y
(y − 1)

z − 2 = 3(x− 1) + (y − 1)⇒ z = 3x+ y − 2

This is the tangent plane.

Theorem 2.7. Let f : Rn → R be differentiable at 0 and satisfy

∀ x ∈ Rn ⇒ x ̸= 0 and ∀ t ∈ R*
+ ⇒ f(tx) = tf(x)

=⇒ f is linear.

Proof. Since f is differentiable at 0 by Definition 2.6 ∃ L : Rn → R s.t.

f(x) = f(0) + L(x) + o(∥x∥)

By our second assumption about this function we have that

∀ t > 0⇒ f(0) = f(t · 0) = tf(0) = 0 =⇒ f(x) = L(x) + o(∥x∥)

Using f(tx) = tf(x)

f(tx)

t
= L(x) +

o(t∥x∥)
t

−−−→
t→0

L(x) + o(∥x∥)

∀ x ∈ Rn ⇒ f(x) = L(x), so f is linear.

Definition 2.14 (Gradient). Let f : X ⊆ Rn → R with X open. Suppose the partial
derivatives exist at a ∈ X. The gradient of f at a is

∇f(a) =
(

∂f

∂x1
(a), · · · , ∂f

∂xn
(a)

)

Corollary. If f is diff at a⇒ ∀ h ∈ Rn

Dfa(h) = ⟨∇f(a), h⟩ = Ja(f)

Indeed Ja(f) =
(

∂f
∂x1

(a), · · · , ∂f
∂xn

)
∈M1×n(R)

2.3 The Chain Rule

Intuition. We have X ⊆ Rn F−→ F (X) ⊆ Y ⊆ Rm G−→ Rk. Which means G ◦ F : X → Rk
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Definition 2.15 (Lipschitz). Let (X, d) and (Y, ρ) be any metric spaces. We say that a
function f : X → Y is Lipschitz continuous if there exists a Lipschitz constant c < 0 such
that

∀ x, z ∈ X ⇒ ρ(f(x).f(z)) ⩽ c · d(x, z)

Corollary. Let (X, d) and (Y, ρ) be metric spaces. If f : X → Y is Lipschitz ⇒ f is C0

Proof. Let x0 ∈ X be arbitrary. Let ε ∈ R+ be any. Define δ = ε
c , where c > 0 is such that

∀ x, y ∈ X ⇒ ρ(f(x).f(y)) ⩽ c · d(x, y)

It follows that
∀ x ∈ X ⇒ d(x, x0) < δ ⇒ ρ(f(x).f(x0)) < ε

Indeed, let x ∈ X s.t. d(x, x0) < δ ⇒

ρ(f(x).f(x0)) ⩽ c · d(x, x0) < c · δ = ε

∴ f is continuous at x0. Since x0 is arbitrary, it is continuous on the whole space.

Remark. Linear maps are Lipschitz because all linear maps are continuous.

Theorem 2.8 (Chain Rule). Let X ⊆ Rn be open, Y ⊆ Rm open, F : X → Rm s.t.
F (X) ⊆ Y and G : Y → Rk. Let a ∈ X. Suppose F is differentiable at a and G is
differentiable at F (a)⇒ G ◦ F is differentiable at a and

D(G ◦ F )a = DGF (a) ◦DFa

Proof. We have G(F (a+ h)) = · · · . Since F is differentiable at a

F (a+ h) +DFa(h) + ε(h)︸ ︷︷ ︸
:=h′

where

∥∥ε(h)∥∥
∥h∥

→ 0

Since G is differentiable at F (a)

G(F (a+ h)) = G(F (a) + h′) = G(F (a) +DGF (a)(h
′) + ε̃(h′) where

∥∥ε̃(h′)∥∥
∥h′∥

−−−→
h′→0

0

DGF(a)(h
′) = DGF (a)(DFa(h)) +DGF (a)(ε(h))

Since DGF(a) is linear and finite dimensional it satisfies Definition 2.15 ∃ c > 0 s.t.

∀ y ∈ Rn ⇒
∥∥∥DGF (a)(y)

∥∥∥ ⩽ c · ∥y∥

⇒
∥∥∥DGF (a)(ε(h))

∥∥∥ ⩽ c ·
∥∥ε(h)∥∥⇒

∥∥∥DGF (a)(ε(h))
∥∥∥

∥h∥
→ 0

Thus DGF (a)(ε(h)) = o(∥h∥). Let us also show ε̃(h′) = o(∥h∥)

h′ = DFa(h) + ε(h)

Using the Lipschitz property of DFa we know there ∃ c > 0 s.t.
∥∥h′∥∥ ⩽ c · ∥h∥∥∥ε̃(h′)∥∥

∥h∥
=

∥∥ε̃(h′)∥∥
∥h∥

·
∥∥h′∥∥
∥h′∥

⩽ c ·
∥∥ε̃(h′)∥∥
∥h∥

−−−→
h→0

0
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Thus ε̃(h′) = o(∥h∥) and hence

G ◦ F (x+ h) = G(F (x)) +DGF (x) ◦DFx(h) + o(∥h∥)

which satisfies Definition 2.6

Remark. Let L : Rn → Rk and ∥x∥∞ = max |xi| so x = x1e1 + · · ·xnen

L(x) = x1L(e1) + · · ·+ xnL(en)

∥∥L(x)∥∥∞ ⩽ ∥x∥∞
n∑

i=1

∥∥L(ei)∥∥∞︸ ︷︷ ︸
=c

Theorem 2.9. Let ⟨·⟩ be a scalar product in Rn and ∥·∥ the associated norm by Definition 2.9

(d1) ∥·∥ is differentiable on Rn \ {0}

(d2) ∥·∥ is not differentiable on 0

Proof. Let us proceed with the proof.

(d1) We can write the norm from Definition 2.9 as the composition ∥ · ∥ = G ◦ F

F : Rn → R with F : x 7→ ⟨x, x⟩ and G : (0,∞)→ R with G : x 7→
√
x

Both of which are differentiable

∀ a ∈ Rn ⇒ DFa(h) = 2⟨a, h⟩ and ∀ a ∈ Rn ⇒ DGF (a)(s) =
1

2
√
t
s

By Theorem 2.8 we have d(∥ · ∥)a = DGF (a) ◦DFa hence

d(∥ · ∥)a(h) = DG∥a∥2
(
DFa(h)

)
=

1

2∥a∥
· 2⟨a, h⟩ = ⟨a, h⟩

∥a∥

d(∥ · ∥)a(h) = ⟨a,h⟩
∥a∥ for a ̸= 0

(d2) Suppose by contradiction, ∥·∥ satisfies Definition 2.6 and take a = 0

∥x∥ = ∥0∥+ L(x− 0) + o0(x) = L(x) + o0(x)

Since L is linear v ∈ Rn s.t. L(x) = ⟨v, x⟩. Suppose ∥u∥ = 1 and x = tu with t→ 0

|∥tu∥ − L(tu)|
∥tu∥

=
||t| − t⟨v, u⟩|

|t|
= |1− sgn(t)⟨v, u⟩|

|1− ⟨v, u⟩| = 0⇒ ⟨v, u⟩ = 1︸ ︷︷ ︸
t>0

and |1 + ⟨v, u⟩| = 0⇒ ⟨v, u⟩ = −1︸ ︷︷ ︸
t<0

=⇒⇐= since ⟨v, u⟩ can’t have two different values.

∴ Theorem 2.9 is true.

Intuition. We now will prove that Definition 2.14 is orthogonal to the level sets.

Theorem 2.10. Let f : X ⊆ Rn → R with X open, f differentiable, and x ∈ X. Suppose
∇f(x) ̸= 0⇒ ∇f(x) points in direction of sharpest increase of f .
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Proof. Let v ∈ R+ s.t. ∥v∥ = 1

⇒ lim
t→0

f(x+ tv)− f(x)

t
= Dfx(v) = ⟨∇f(x), v⟩

We can then observe that for

v =
∇f(x)∥∥∇f(x)∥∥ ⇒ sup

∥v∥=1

⟨∇f(x), v⟩ is attained

which means v is in direction of the gradient.

Definition 2.16 (Level Set). Let f : Rn → R and α ∈ R. The level set of f at α is

Sα := {x ∈ Rn | f(x) = α}.

Theorem 2.11. Let f : X ⊆ Rn → R be differentiable and α ∈ R. Set Sα to be the level
set. Also suppose ∇f(x) ̸= 0 =⇒ ∇f(x) ⊥ Sα at x ∈ Sα. Meaning ∀ γ : (−ε, ε)→ Sα that
is differentiable s.t. γ(0) we have

⟨γ′(0),∇f(x)⟩ = 0

Proof. Since ∀ t ∈ (−ε, ε) ⇒ γ(t) = Sα ⇒ f(γ(t)) = α. We know p(t) := f(γ(t)) = α is
differentiable. By Theorem 2.8

p′(t) = ⟨∇f(γ(t)), γ′(t)⟩ = 0

At t = 0 =⇒ ⟨∇f(x), γ′(0)⟩ = 0

Notation. Remember ∥·∥2 is the Euclidean norm.

Theorem 2.12. Let r > 0 and set Sr := {x ∈ Rn | ∥x∥2 = r}. Then ∀ x ∈ Sr =⇒ x ⊥ Sr

Proof. Set f := ∥x∥2 and notice it is differentiable by Theorem 2.9

⇒ ∇f(x) = x

∥x∥2

Take x ∈ Sr ⇒ ∇f(x) = x
r . But we know from Theorem 2.11 that is we take γ : (−ε, ε)→

Sr

⟨γ′(0),∇f(x)⟩ = 0 = ⟨γ′(0), x
r
⟩

∴ x ⊥ Sr since multiplying by r preserves orthogonality.

Theorem 2.13. Let u ̸= 0 ∈ Rn. Let f : Rn → R differentiable s.t. ∀ x ∈ Rn ∃ λx ∈ R s.t.
∇f(x) = λxu. Show that ∃ φ : R→ R s.t. ∀ x ∈ Rn ⇒ f(x) = φ(⟨x, u⟩)

Proof. Let α ∈ R and H := {x ∈ Rn | ⟨x, u⟩ = α}. Let x, y ∈ H, which is the affine
hyperplane, and we can link through a path γ(t) = (1− t)x+ ty

⇒ ∀ t ∈ (0, 1)⇒ γ′(t) = y − x

Set p : [0, 1]→ R with p = t 7→ f(γ(t)), notice p is differentiable

⇒ ∀ t ∈ (0, 1)⇒ p′(t) = ⟨∇f(γ(t)), γ′(t)⟩ = ⟨∇f(γ(t)), y − x⟩
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By assumption ∇f(γ(t)) is proportional to γ(t) which is orthogonal to H

⇒ p′(t) = ⟨λxu, y − x⟩ = λx⟨u, y − x⟩ = 0

∴ f(x) = f(y) which means f is constant ⇒ affine hyperplane is a level set.

Theorem 2.14 (MVT Reloaded). Let f : U ⊆ Rn → Rm with U open. If f is C1 on the
segment [a, b] and ∃M ∈ R+ s.t ∀ c ∈ (a, b)⇒ ∥Dfc∥ ⩽ M =⇒

∥f(b)− f(a)∥ ≤M∥b− a∥

Proof. Let ε > 0. Consider the following set.

S = {t ∈ [a, b] |
∥∥f(t)− f(a)

∥∥ ⩽ M(t− a) + ε(t− a) + ε}

Since f is C0 ⇒ s.t.

∃ δ > 0 s.t. ∀ s ∈ [a, a+ δ] =⇒
∥∥f(s)− f(a)

∥∥ ⩽ ε

Hence a + δ ∈ S. Let c := supS. Note c ∈ S ⇒ a + δ ⩽ c ⩽ b Suppose, by contradiction,
that c < b⇒ f is differentiable in c and

∃ δ0 ∈ (0,min{c− a, b− c}) s.t if|s− c| < δ0 =⇒
∥∥f(s)− f(c)−Dfc(s− c)

∥∥ < ε|s− c|

By assumption, if s ∈ (c, c+ δ0)∥∥f(s)− f(a)
∥∥ ⩽

∥∥f(s)− f(c)
∥∥+ ∥∥f(c)− f(a)

∥∥
⩽
∥∥f(s)− f(c)−Dfc(s− c)

∥∥+ ∥∥Dfc(s− c)
∥∥+ ∥∥f(c)− f(a)

∥∥
< ε(s− c) + (s− c)

∥∥Dfc(c)
∥∥+M(c− a) + ε(c− a) + ε

⩽ M(s− a) + ε(s− a) + ε

But this shows c ̸= supS ⇒ c = b which implies∥∥f(b)− f(a)
∥∥ ⩽ M(b− a) + ε(b− a) + ε =⇒

∥∥f(b)− f(a)
∥∥ ⩽ M(b− a)

Hence Theorem 2.14 is true.

2.4 Clairaut Theorem

Definition 2.17 (Second Derivative). Let f : X ⊆ Rn → R. We call

∀ 1 ⩽ i, j ⩽ n⇒ ∂2f

∂xj∂xi
=

∂

∂xj

(
∂f

∂xi

)
the second derivative of f whenever f has differentiable first partial derivatives.

Definition 2.18 (C1 and C2). Let f : X ⊆ Rn → R

(C1) We say f is C1 if f is differentiable with continuous partials i.e. if

∀ i ∈ {1, · · · , n} ⇒ ∂f

∂xi
is C0

(C2) We say f is C2 if

∀ i ∈ {1, · · · , n} ⇒ ∂2f

∂xjxi
is C0
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Theorem 2.15 (Clairaut). Let f : X ⊆ Rn → R with X open be C2 =⇒

∀ i, j ∈ {1, · · · , n} ⇒ ∂2f

∂xixj
=

∂2f

∂xjxi

Proof. We take n = 2 to simplify notation so Rn = R2. Let (a1, a2) ∈ X. Notice that

∂f

∂x1
(a1, a2) = lim

h1→0

f(a1 + h1, a2)− f(a1, a2)

h1

Now set S = f(a1 + h1, a2 + h2)− f(a1, a2 + h2)− f(a1 + h1, a2) + f(a1, a2)

∂2f

∂x2∂x1
(a1, a2) = lim

h2→0
lim
h1→0

S(h1, h2)

h1h2

Similarly
∂2f

∂x1∂x2
(a1, a2) = lim

h2→0
lim
h1→0

S(h1, h2)

h1h2

Set g : x 7→ f(a1 + h1, x) − f(a1, x). Notice that S(h1, h2) = g(a2 + h2) − g(a2). We can
apply Theorem 2.14 to g that is C1 so ∃ c2 ∈ (a2, a2 + h2) s.t.

S(h1, h2) = h2g
′(c2)

= h2

(
∂f

∂x2
(a1 + h1, c2)−

∂f

∂x2
(a1, c2)

)
Set h : x 7→ ∂f

∂x2
(x, c2) and apply Theorem 2.14 to h so ∃ c1 ∈ (a1, a1 + h1) s.t.

S(h1, h2) = h1h2
∂f

∂x1∂x2
(c1, c2)

Since c1 ∈ (a1, a1 + h1) and c2 ∈ (a2, a2 + h2) and f is C2 ⇒

∂2f

∂x1∂x2
(a1, a2) =⇒ lim

(h1,h2)→(0,0)

S(h1, h2)

h1h2
=

∂2f

∂x1∂x2
(a1, a2)

Proceeding similarly setting k : x 7→ f(x, a2 + h2)− f(x, a2)

lim
(h1,h2)→(0,0)

S(h1, h2)

h1h2
=

∂2f

∂x2∂x1
(a1, a2)

Thus
∂2f

∂x2∂x1
(a1, a2) =

∂2f

∂x1∂x2
(a1, a2)

∴ Theorem 2.15 is true.

Definition 2.19 (Hessian Matrix). Let f : X ⊆ Rn → R with X open be twice differentiable
at x ∈ X. The Hessian of f at x is defined as

∇2f(x) =


∂2f

∂x2
1

(x) · · · ∂2f

∂x1∂xn
(x)

...
. . .

...
∂2f

∂xn∂x1
(x) · · · ∂2f

∂x2
n

(x)

 ∈Mn×n(R)

Corollary. If f is C2 ⇒ by Theorem 2.15 we have that ∀ x ∈ X =⇒ ∇2f(x) is symmetric.
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Definition 2.20. We say x ∈ X is a critical point of f if ∇f(x) = 0

Lemma 2.3. Let f : X ⊆ Rn → R with X open. Suppose f is differentiable. Suppose
x ∈ X is a local minmax of f =⇒ ∇f(x) = 0

Proof. Let v ∈ Rn ang g : t 7→ f(x+ tv). By assumption g has a local minmax at 0 since g
is differentiable =⇒ g′(0) = 0. Note that

g′(0) = ⟨∇f(x), v⟩

Hence ∀ v ∈ Rn =⇒ ⟨∇f(x), v⟩ = 0. Thus ∇f(x) = 0

Notation. Let I ⊆ R open ⇒ Ck(I,R) = {f : I → R | f (k) exists and is C0}

Theorem 2.16 (Taylor). Let f : I ⊆ R → R be Ck on an open interval I containing
x0=⇒ ∀ x ∈ I ∃ ξ between x0 and x s.t.

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+
f (n)(x0)

n!
(x− x0)

n +
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1

where the last term is the Lagrange remainder.

Intuition. We have ∇f(x) = 0. When can we asses ∇f(x) = 0 is minmax?

Theorem 2.17 (Taylor Expansion). Let f : X ⊆ Rn → R with X open. Let v ∈ Rn

=⇒ f(x+ tv) = f(x) + t⟨∇f(x), v⟩+ t2

2
⟨v,∇2f(x)v⟩+ o(t2)

Proof. Set g(t) = f(x+ tv). Note f and g are C2 and by Theorem 2.16 we have

g(t) = g(0) + t g′(0)︸ ︷︷ ︸
=⟨∇f(x),v⟩

+
t2

2
g′′(0)︸ ︷︷ ︸

=⟨v,∇2f(x)v⟩

+o(t2)

By Theorem 2.8 g′(t) = ⟨∇f(x+ tv), v⟩ so

g′(t) =

n∑
i=1

∂f

∂xi
(x+ tv)vi = ⟨∇f(x+ tv), v⟩

d

dt

∂f

∂xi
(x+ tv) =

n∑
j=1

∂2f

∂xj∂xi
(x+ tv)vj

Thus

g′′(t) =
∑
i,j

∂2f

∂xj∂xi
(x+ tv)vivj = ⟨v,∇2f(x+ tv)v⟩ = ⟨v,∇2f(x)v⟩︸ ︷︷ ︸

at t=0

Which proves Theorem 2.17.

Lemma 2.4 (Hessian Test). Let f : X ⊆ Rn → R with X open be s.t. ∇f(x) = 0

(∇1) ∀ v ∈ Rn, if x is a local min =⇒ ⟨v,∇2f(x)v⟩ ⩾ 0

(∇2) ∀ v ̸= 0 =⇒ ⟨v,∇2f(x)⟩ > 0
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Proof. Recall f(x+ tv) = f(x) + t2

2 ⟨v,∇
2f(x)v⟩+ o(t2)

(∇1) Suppose by contradiction ∃ v ∈ Rn s.t. ⟨v,∇2f(x)v⟩ ⩽ 0

=⇒ f(x+ tv)− f(x) =
t2

2
⟨v,∇2f(x)v⟩+ o(t2)

Hence for small enough t =⇒ ⟨v,∇2f(x)v⟩ + o(t2) < 0. Thus for t small enough
f(x+ tv)− f(x) < 0 =⇒ not a local minimum. Hence ⟨v,∇2f(x)v⟩ ⩾ 0

(∇2) Consider inf∥v∥=1⟨v,∇2f(x)v⟩. Notice that v 7→ ⟨v,∇2f(x)v⟩ is C0 and {x ∈ Rn |
∥x∥ = 1} which is a unit sphere. This set is compact, hence ∃ v0 s.t. ∥v0∥ = 1 =⇒

inf
∥v∥=1

⟨v,∇2f(x)v⟩ = ⟨v0,∇2f(x)v0⟩

This v0 is the minimum. Now define c0 := inf∥v∥=1⟨v,∇2f(x)v⟩. We deduce that

∀ v s.t. ∥v∥ = 1 =⇒ ⟨v,∇2f(x)v⟩ ⩾ c0

Hence
∀ v ̸= 0 ∈ Rn =⇒

〈 v

∥v∥
,∇2f(x)

v

∥v∥

〉
⩾ c0

Thus ∀ v ̸= 0 =⇒ ⟨v,∇2f(x)v⟩ ⩾ c0∥v∥2 and hence

f(x+ tv)− f(x) ⩾
t2

2
c0∥v∥2 + o(t2)

Since o(t2)
t2 → 0 as t → 0 ⇒ ∃ ε0 > 0 depending only on c0 s.t. ∀ v ∈ Rn ⇒ ∥v∥ = 1

and ∀ |t| ⩽ ε0 =⇒ o(t2) ⩾ − t2

4 c0 ⇒

f(x+ tv)− f(x) ⩾
t2

2
c0 −

t2

4
c0 =

t2

4
c0 > 0

Indeed ∀ y ∈ B(x, ε0) =⇒ f(y)− f(x) ⩾ ∥x− y∥2

f(y)− f(x) ⩾
∥x− y∥2

4
c0

Then x is a local minimum. Note y = x+ y−x
∥y−x∥∥y − x∥

Thus Lemma 2.4 is true.

Definition 2.21. Let A ∈ Mn×n(R). A number λ ∈ R is called an eigenvalue of A if
∃ v ̸= 0 ∈ Rn s.t.

Av = λv

Then v is called an eigenvector associated to λ.

Remark. Let A ∈Mn×n(R)⇒ ⟨x,Ay⟩ = x⊤(Ay) = (A⊤x)⊤y = ⟨A⊤x, y⟩

Lemma 2.5. Let A ∈Mn×n(R) and A = A⊤

=⇒ inf
∥x∥=1

⟨x,Ax⟩ = λmin

where λmin is the minimal eigenvalue of A
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Proof. By Definition 2.11 A = PDP−1 and since A is symmetric A = PDP⊤

⟨x,Ax⟩ = ⟨x,PD(P⊤x)⟩ = ⟨P⊤x,D(P⊤x)⟩

Notice P = (v1, v2, . . . , vn) are the eigenvectors. Now y = P⊤x and ∥y∥ = ∥x∥ = 1 since
P⊤ is orthogonal. Thus

inf
∥x∥=1

⟨x,Ax⟩ = inf
∥y∥=1

⟨y,Dy⟩ = inf
∥y∥=1

 n∑
i=1

λiy
2
i


Clearly the infimum is for y1 = ±1, y2 = 0, · · · , yn = 0. Thus

inf
∥x∥=1

⟨x,Ax⟩ = λ1

Where λ1 is of course the minimal eigenvalue.

Example 2.9. Let f : (x, y) 7→ ex + xy

Proof. Notice ∇f(x, y) = (ex + y, x) and ∇f(x, y) = (0, 0)⇔ x = 0 and y = −1

∇2f(x, y) =

(
ex 1
1 0

)
⇒ ∇2f(0,−1) =

(
1 1
1 0

)
Notice now that

X(λ) = det

(
λ− 1 −1
−1 λ

)
= (λ− 1)λ− 1 = λ2 − λ− 1

Notice λ1 < 0 < λ2. Hence (0,−1) is neither a local max or min: it is a saddle point.

2.5 Inverse Function Theorem

Definition 2.22. Let (X, d) be a metric space. We say that f : X → X is a contraction if

∀ x, y ∈ X =⇒ d(f(x), f(y)) ⩽ d(x, y)

We say f is a strict contraction if

∃ c ∈ (0, 1) s.t. ∀ x, y ∈ X =⇒ d(f(x), f(y)) ⩽ c · d(x, y)

Definition 2.23. Let f : X → X. We say that x ∈ X is a fixed point of f if f(x) = x

Theorem 2.18 (Picard Fixed Point). Let (X, d) be a complete metric space. Let f be a strict
contraction =⇒ f has a unique fixed point.

Proof. Let us begin with uniqueness. Suppose by contradiction f(x) = x and f(y) = y. By
Definition 2.23 we have that

d(f(x), f(y))︸ ︷︷ ︸
=d(x,y)

⩽ c︸︷︷︸
∈(0,1)

·d(x, y) =⇒ d(x, y) = 0

And by (d2) of Definition 1.1 ⇒ d(x, y) = 0⇔ x = y.

Now we have to show existance. Let u0 ∈ X ⇒ ∀ n ⩾ 0 we set un+1 = f(un)

=⇒ d(un+1, un) = d(f(un), f(un+1)) ⩽ c · d(un, un+1)
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Iterating gives d(un+1, un) ⩽ cnd(u1, u0) by induction. Let p, q ⩾ n0 with q ⩾ p

=⇒ d(up, uq) ⩽
q−1∑
k=p

d(uk+1, uk) ⩽

q−1∑
k=p

ck

 d(u1, u0)

⩽

 +∞∑
k=n0

ck

 d(u1, u0) =
cn0

1− c
d(u1, u0)

Fix ε > 0⇒ ∃ no ∈ N s.t. cn0

1−cd(u1, u0) < ε

⇒ ∀ p, q ⩾ n0 =⇒ d(up, uq) ⩽ ε

This means that (un) is a Cauchy sequence, so by Definition 1.12 (un) converges

=⇒ ∃ ℓ ∈ X s.t. un → ℓ

Notice f is C0 since it is a contraction. If d(xn, x)→ 0

=⇒ d(f(xn), f(x)) ⩽ d(xn, x)→ 0

Remember all Lipschitz functions are continuous. Now un+1 = f(un)

un+1 −−−−−→
n→+∞

ℓ⇒ un −−−−−→
n→+∞

ℓ =⇒︸︷︷︸
f is C0

f(un) −−−−−→
n→+∞

f(ℓ)

But un+1 → ℓ, so ℓ = f(ℓ). This proves Theorem 2.18

Theorem 2.19 (Brouwer Fixed Point). Let D ⊆ Rn be a nonempty, compact, and convex
set. If f : D → D is C0 =⇒ ∃ at least one point x ∈ D such that f(x) = x.

Intuition. While no one has been able to axiomatize reality, I was able to notice Earth is a
2-sphere embedded in R3. I am currently in New York. Print a map of the city, which is of
course a shrunken version of the city, and also a continuous function f : NY → NY that sends
each point of New York to a point in the map. Then by Theorem 2.19, there exists at least one
point x ∈ NY such that f(x) = x, a point of New York that coincides with its representation
on the map. For more information consult Borges.

Definition 2.24. Let f : A ⊆ Rn → R. We say that f is strictly monotonic ⇔ f is either
strictly increasing or strictly decreasing, that is

∀ x < y ∈ A =⇒

{
f(x) < f(y) if f is strictly increasing
f(x) > f(y) if f is strictly decreasing

Definition 2.25 (Injective). Let f : A → B. We say that f is an injection (or one-to-one
function) ⇔

∀x1, x2 ∈ A s.t. f(x1) = f(x2) =⇒ x1 = x2

Equivalently, if x1 ̸= x2 ⇒ f(x1) ̸= f(x2).

Definition 2.26 (Surjective). Let f : A→ B. We say that f is a surjection (or onto function)
⇔

∀ y ∈ B ∃ x ∈ A s.t. f(x) = y.

That is, every element of B is the image of at least one element of A under f .
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Definition 2.27 (Bijection). Let f : A → B. We say that f is a bijection ⇔ f is both
Definition 2.25 and Definition 2.26, so

∀ y ∈ B ∃! x ∈ A s.t f(x) = y.

Intuition. The motivation to have this here is the Inverse Function Theorem Suppose f : Rn →
Rn is C1. Suppose Dfx0 is invertible i.e. f ′(x) ̸= 0, which is a bijection. Now

f(x) ≃ f(x0) +Dfx0
(x− x0)︸ ︷︷ ︸

is a bijection

+o(∥x− x0∥)

We expect then locally that around x0 f is a bijection, since it is strictly monotonic.

Lemma 2.6. Let g : B(0, r) ⊆ Rn → Rn s.t. g(0) = 0 and for which ∀ x, y ∈ B(0, r)⇒∥∥g(x)− g(y)
∥∥ ⩽

1

2
∥x− y∥

=⇒ f : B(0, r)→ Rn with f : x 7→ x+ g(x) is an injective function and

B

(
0,

r

2

)
⊆ f(B(0, r))

Proof. Let x, y ∈ B(0, r) s.t. f(x) = f(y).

x+ g(x) = y + g(y) =⇒ ∥x− y∥ =
∥∥g(x)− g(y)

∥∥ ⩽ ∥x− y∥

⇒ ∥x− y∥ = 0 ⇔ x = y. This satisfies Definition 2.25. Now let y ∈
(
0, r

2

)
. We want to

show ∃ x ∈ B(0, r) s.t.
f(x)︸︷︷︸
x+g(x)

= y ⇔ x = y − g(x)

We want a fixed point of F : B(0, r)→ Rn with F : x 7→ y − g(x)

∥∥F (x)
∥∥ =

∥∥y − g(x)
∥∥ ⩽ ∥y∥+

∥∥g(x)− g(0)
∥∥ <

r

2
+
∥x∥
2

< r

This means F (B(0, r)) ⊆ B(0, r). Now, remember ∥y∥ < r
2 hence ∃ε > 0 s.t. ∥y∥ ⩽ r

2 (1−ε).
Let x ∈ B[0, r(1− ε)] which as per Definition 1.2 is a closed ball ⇒∥∥F (x)

∥∥ ⩽ ∥y∥+ 1

2
∥x∥

⩽
r

2
(1− ε) +

r

2
(1− ε) = r(1− ε)

Hence F (B[0, r(1− ε)]) ⊆ B[(0, r(1− ε)]. Now

F (x)− F (x′) = g(x′)− g(x)⇒∥∥F (x)− F (x′)
∥∥ ⩽

1

2

∥∥x− x′
∥∥

Which means F is a strict contraction from X to itself where X = B[(0, r(1 − ε)] is
closed. This means that it satisfies Definition 1.12 and is complete. By Theorem 2.18
∃ x ∈ B[0, r(1− ε)] s.t.

F (x)⇔ f(x) = y =⇒ y ∈ f(B(0, r))

This shows B
(
0, r

2

)
⊆ f(B(0, r))
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Remark. Remember f← ◦ f = id so

D(f← ◦ f)x = id⇒ D(f←)f(x) ◦Dfx ⇒ D(f ′)f(x) = (Dfx)
←

Definition 2.28 (C1-diffeomorphism). A map f : X ⊆ Rn → Rn is a local C1-diffeomorphism
if ∀ x ∈ X ∃ U ⊆ X open s.t. x ∈ U and ∃ V ⊆ Rn open s.t. f(x) ∈ V s.t. f |U : U → V is
a bijection with a C1 inverse.

Theorem 2.20 (Inverse Function). Let f : E ⊆ Rn → Rn be C1 with E open. Let x0 ∈ E.
Suppose Dfx0 is invertible =⇒ ∃U ⊆ E open s.t. x0 ∈ U and V ⊆ Rn open with f(x0) ∈ V
s.t. f |U is a bijection i.e. f(U) = V . Hence ∃ an inverse map f← : V → U that is C1 on V

⇒ ∀ x ∈ V =⇒ D(f←)f(x) = (Dfx)
←

Proof. Since Dfx0
is invertible, consider the map f̃(x) := (Dfx0

)←
(
f(x+ x0)− f(x0)

)
For

this new map f̃ , we have f̃(0) = 0 and Df̃0 = id. Hence, without loss of generality, we can
assume from now on that

x0 = 0⇒ f(0) = f(x0) = 0 =⇒ Df0 = id

Let g(x) = f(x)− x so that f(x) = x+ g(x)

⇒ Df0︸︷︷︸
=id

= id +Dg0 ⇒ Dg0 = 0⇒ ∥Dg0∥L = 0

Where this norm satisfies Definition 2.4, and by its continuity

∃ r > 0 s.t. ∀ x ∈ B(0, r) =⇒ ∥Dgx∥ <
1

2

Let x, y ∈ B(0, r). Define γ(t) = (1− t)x+ ty

⇒ g(γ(1))︸ ︷︷ ︸
f(y)

− g(γ(0))︸ ︷︷ ︸
f(x)

=

∫ 1

0

d

dt
g(γ(t))︸ ︷︷ ︸

is C1

dt

By Theorem 2.8 then d
dtg(γ(t)) = Dgγ(t)(γ

′(t))

⇒g(y)− g(x) =

∫ 1

0

Dfγ(t)(g − x)dt

⇒
∥∥g(y)− g(x)

∥∥ ⩽
∫ 1

0

∥∥∥Dfγ(t)(y − x)
∥∥∥︸ ︷︷ ︸

⩽ 1
2∥y−x∥

dt ⩽
1

2
∥x− y∥

We apply Lemma 2.6 ⇒ f |B(0,r) is injective and B
(
0, r

2

)
⊆ f(B(0, r)). We guess and set

V = B

(
0,

r

2

)
and U = B(0, r) ∩ f←

(
B

(
0,

r

2

))

Since U ⊆ B(0, r)⇒ f |U : U → V is one-to-one. Moreover

∀ v ∈ V ∃ x ∈ B(0, r) s.t. f(x) = v =⇒ x ∈ B(0, r) ∩ f←(V ) = U

f |U :U→V is also surjective =⇒ it is a bijection. Since the ball B
(
0, r

2

)
is open and f

is C0 =⇒ by Theorem 2.5 f←(B
(
0, r

2

)
) is open, thus U is open and so is V . Now, let
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f← : V → U . We have to show f← is differentiable at 0. By definition f←(x) = 0l Let
xn ∈ V → 0. Let yn = f←(xn) ∈ U .

⇒
∥∥f←(xn)− xn

∥∥
xn

=

∥∥yn − f(yn)
∥∥

∥xn∥

And since xn = f(yn) = yn + g(yn)

∥xn∥ ⩽ ∥yn∥+
∥∥g(yn)− g(0)

∥∥ ⩽ ∥yn∥+
1

2
∥yn∥ ⩽

3

2
∥yn∥

And notice that g(0) = 0 and then we have

∥xn∥ ⩾ ∥yn∥ −
∥∥g(yn)∥∥

⩾ ∥yn∥ −
1

2
∥yn∥ =

1

2
∥yn∥

By both of these inequalities

1

2
∥yn∥ ⩽ ∥xn∥ ⩽

3

2
∥yn∥ =⇒

∥∥yn − f(yn)
∥∥

∥xn∥
⩽ 2

∥∥yn − f(yn)
∥∥

∥xn∥

Since f is differentiable at 0 with f(0) = 0 and Df0 = id

=⇒ lim
y→0

∥∥f(y)− f(0)− (y − 0)
∥∥

∥y − 0∥
= 0

Which is why we can conclude∥∥yn − f(yn)
∥∥

∥yn∥
→ 0 =⇒

∥∥f←(xn)− xn

∥∥
∥xn∥

→ 0

∴ f← is differentiable at 0 and D(f←)0 = id

Intuition. Theorem 2.20 says that if f is C1 and ∀ x ∈ X, the differential Dfx is invertible, then
f satisfies Definition 2.28. In other words, f is a local C1-diffeomorphism.

Example 2.10. F (x, y) = (ex cos, ex sin y). Let us show F is a local C1-diffeomorphism.

Proof. F is C1 since partials exist and are C0. We compute

J (F )(x,y) =

(
∂F1

∂x = ex cos y ∂F1

∂y = −ex sin y
∂F2

∂x = ex sin y ∂F2

∂y = ex cos y

)

Notice det
(
J (F )(x,y)

)
= e2x ̸= 0 =⇒ ∀ (x, y) ∈ R2 =⇒ DF(x,y) is invertible.

By Theorem 2.5 =⇒ F is a local C1-diffeomorphism.

Theorem 2.21. Let f : Rn → Rn be C1 s.t. ∀ x ∈ Rn ⇒ Dfx is invertible ∀ V ⊆ Rn open
=⇒ f(V ) is open.

Proof. Let V ⊆ Rn be open and set y ∈ f(V ) ⇒ ∃ xo ∈ V s.t. f(x0) = y. Since f is C1
and Dfx0 is invertible, we can apply Theorem 2.20. That is ∃ U ⊆ Rn open s.t. x0 ∈ U
and ∃W ⊆ Rn open with f(x0) ∈ W s.t. f |U : U → W is a bijection. Now since x0 ∈ V
and U we can pick U small enough such that

U ⊆ V =⇒W = f(U) ⊆ f(V )

But W is open and f(x0) = y ∈W . Thus f(V ) is open.
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2.6 Implicit Function Theorem

Theorem 2.22 (Implicit Function). Let f : E ⊆ Rn → R be C1. Let y ∈ E s.t. f(y) = 0.
Suppose additionally that ∂f

∂xn
(y) ̸= 0 =⇒ ∃ V ⊆ Rn open s.t. y ∈ V and ∃ U ⊆ Rn−1

open s.t. (y1, · · · , yn) ∈ U and ∃ g : U → R that is C1 s.t.

{x ∈ V | f(x) = 0} = {(x1, · · · , xn−1, g(x1, · · · , xn−1) | (x1, · · · , xn−1) ∈ U}

Moreover ∀ j ∈ {1, · · · , n− 1} ⇒

∂g

∂xj
(y1, · · · , yn−1) = −

∂f
∂xj

(y)

∂f
∂xn

(y)

Proof. Let F : E → Rn with F : (x1, · · · , xn) 7→ (x1, · · · , xn−1, f(x1, · · · , xn)). By as-
sumption f is C1 so F is C1 as well. Computing the Jacobian

J (F )(y) =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
∂f
∂x1

(y) ∂f
∂x2

(y) · · · ∂f
∂xn−1

(y) ∂f
∂xn

(y)

 (y)

This matrix is invertible. Notice that det(J (F )(y)) = 1× · · ·× ∂f
∂xn

(y) ̸= 0. This is because
by assumption the derivative is nonzero ⇒ DFy : Rn → Rn is invertible. By Theorem 2.20
∃ V ⊆ E and W ⊆ Rn open sets s.t. y ∈ V and F (x) ∈W s.t. F |V : V →W is a bijection
and F← : W → V is C1. Let h1, · · · , hn : W → R s.t. F←(x) = (h1, · · · , hn)(x) with x ∈ V

⇒ F (F←(x))︸ ︷︷ ︸
(h1(x),··· ,hn−1(x),f((h1(x),··· ,hn(x))))

= x = (x1, · · · , xn)

⇒ h1(x) = x1, · · · , hn−1(x) = xn−1 and ⇒ f(x1, · · · , xn−1, hn(x)) = xn. Set U =
{(x1, · · · , xn−1) | (x1, · · · , xn1 , 0) ∈W}. We want to prove the equality that was stated.

⊆. Let x ∈ V s.t. f(x) = 0.

⇒ F (x) ∈ V = (x1, · · · , xn−1)︸ ︷︷ ︸
∈W

Since F |V : V →W . By definition of U ⇒ (x1, · · · , xn−1) ∈W . Notice then

x = F←(x1, · · · , xn−1, 0) = (x1, · · · , xn−1, hn(x1, · · · , xn−1, 0)

And since g : U → R with g(x1, · · · , xn−1) = hn(x1, · · · , xn−1, 0). This shows x ∈
{(x1, · · · , xn−1, g(x1, · · · , xn−1) | (x1, · · · , xn−1) ∈ U}.

⊇. Let x ∈ {(x1, · · · , xn−1, g(x1, · · · , xn−1) | (x1, · · · , xn−1) ∈ U}. Recall that ∀ x′ ∈W ⇒

f(x′1, · · · , x′n−1, hn(x
′
1, · · · , x′n) = x′n

Suppose x′n ̸= 0. If (x′1, · · · , x′n−1, 0) ∈W ⇒

f(x′1, · · · , x′n−1, g(x′1, · · · , x′n−1)) = 0

Since (x1, · · · , xn−1) ∈ U ⇒ (x1, · · · , xn−1, 0) ∈W ⇒

f(x1, · · · , xn−1, g(x1, · · · , xn−1)) = 0

So then we have F←(x1, · · · , xn−1, 0) ∈ V
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= (x1, · · · , xn−1, g(x1, · · · , xn−1)) = x ∈ V

Thus x ∈ {x′ ∈ V | f(x′) = 0}. Finally ∀ (x1, · · · , xn−1) ∈ U ⇒

f(x1, · · · , xn−1, g(x1, · · · , xn−1)) = 0

By Theorem 2.8, and since g is C1 since F← is C1 we have that ∀ j ∈ {1, · · · , n− 1} ⇒

∂f

∂xj
(x1, · · · , xn−1, g(x1, · · · , xn−1)) +

∂f

∂xn
(x1, · · · , xn−1, g(x1, · · · , xn−1))

∂f

∂xj
(x) = 0

We now argue that g(y1, · · · , yn−1) = yn since (y1, · · · , yn) ∈ {x ∈ V | f(x) = 0} ∈
{(x1, · · · , xn−1, g(x1, · · · , xn−1) | (x1, · · · , xn−1) ∈ U} and (y1, · · · , yn−1) ∈ U . Hence we
have g(y1, · · · , yn−1) = yn. This proves Theorem 2.22.

Example 2.11. Let f : (x, y) ∈ R2 7→ sin y + xy4 + x2.

Proof. Let us look at f(0, 0) = sin 0 + 0 · 04 + 02 = 0 and compute the partial derivative

∂f

∂y
(x, y) = cos y + 4xy3 ⇒ ∂f

∂y
(0, 0) = cos 0 + 4 · 0 · 03 = 1 ̸= 0

Since f is C1 and ∂f
∂y (0, 0) ̸= 0 we use Theorem 2.22 to get U, V ⊆ R open s.t. 0 ∈ U and

V , as well as φ : U → V that is C1 s.t.

∀ x ∈ U =⇒ f(x, φ(x)) = 0

And φ(0) = 0. Now let’s use Theorem 2.16 around 0 that is φ(x) = φ(0) + φ′(0)x+ o(x)

⇒ ∂f

∂x
(x, φ(x)) +

∂f

∂y
(x, φ(x)) · φ′(x) = 0

At x = 0 we can get that ∂f
∂x (x, y) = y4 + 2x and ∂f

∂y (x, y) = cos y + 4xy3

⇒ (04 + 2 · 0) + (cos 0 + 4 · 0 · 03)φ′(0) = 0 + 1 · φ′(0) = 0⇒ φ′(0) = 0

Thus the Taylor Expansion is φ(x) = 0 + 0 · x+ o(x) = o(x)

Example 2.12. Does the relation x+ y+ z+ sin(xyz) = 0 define z as a function of x and y
in a neighborhood of the point (0, 0, 0)?

Proof. First let us define f(x, y, z) = x + y + z + sin(xyz) which satisfies f(0, 0, 0) = 0 as
required. Now let us calculate the partial derivative with respect to z

∂f

∂z
= 1 + cos(xyz) · ∂

∂z
(xyz) = 1 + cos(xyz) · (xy)⇒ ∂f

∂z
(0, 0, 0) = 1 + cos(0) · 0 = 1 ̸= 0

Thus ∂f
∂z (0, 0, 0) ̸= 0 and we can apply Theorem 2.22 to get (0, 0) ∈ R2 and z = h(x, y) s.t.

f(x, y, h(x, y)) = 0. Now

∂z

∂x
= −

∂f
∂x
∂f
∂z

and
∂z

∂y
= −

∂f
∂y

∂f
∂z

We have to get these.

∂f

∂y
= 1 + cos(xyz) · xz = 1 + cos(0) · 0 = 1

∂f

∂x
= 1 + cos(xyz) · yz = 1 + cos(0) · 0 = 1

And ∂f
∂z (0, 0, 0) = 1. Therefore ∂z

∂x (0, 0) = −1 and ∂z
∂y (0, 0) = −1
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2.7 Lagrange Multiplier

Intuition. Let us refresh our memory and apply Lemma 2.4 to an example.

Example 2.13. Let f(x, y) = sinx+ y2 − 2y + 1

Proof. We want to find the critical points. Recall from Definition 2.20 that these are the
point that satisfy ∇f(x) = 0. As such, let us compute the gradient.

∇f(x, y) =
(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
= 0

Where (x, y) are the critical points. This gives us the following expression

∇f(a, b) = (cosx, 2y − 2) = 0

Thus 2y − 2 = 0 ⇒ y = 1 and cosx = 0 ⇒ ∀ n ∈ N ⇒ x = π
2 + nπ. These are the critical

points (a, b) = (π2 + nπ, 1). Now let us apply Lemma 2.4.

∇2f(x, y) =


∂2f

∂x2
(x, y)

∂2f

∂x∂y
(x, y)

∂2f

∂y∂x
(x, y)

∂2f

∂y2
(x, y)


This matrix can be solved as follows

∇2f(x, y) =

(
− sinx 0

0 2

)
⇒ ∇2f

(
π

2
+ nπ, 1

)
=

(
− sin π

2 + n = −(−1)n 0
0 2

)
Thus this diagonal has two options. For n even we have a saddle point, as the diagonal
does not share the same sign. If it is odd, both numbers are positive and thus the point is
a local minimum.

Definition 2.29 (Restriction). Let f : X → Y be a function and let S ⊆ X. The restriction
of f to S, denoted f |S , is the function f |S : S → Y defined as ∀ x ∈ S ⇒ f |S (x) = f(x).

Intuition. The setup is the following. We want to maximize/minimize a function f : Rn → R
under the constraint g = 0 where g : Rn → R where both f, g are C1. The level set is S = {g = 0}
where ∇g(x) ̸= 0. Now ∀ tangent vector v of S at x ⇒ ⟨v,∇g(x)⟩ = 0. Suppose x is a local
maximum of f |S . Theorem 2.10 says ∇f(x) is the direction of the sharpest increase.

∃ a path γ : (−ε, ε)→ S that is C1 s.t. γ(0) = x and γ′(0) = v. Now we look at

d

dt
f(γ(t)) |t=0= ⟨∇(γ(t)), γ′(t)⟩ |t=0= ⟨∇f(x), v⟩ = 0

since
∥∥∇f(x)∥∥∥v∥ cos θ with θ ∈

(
0, π

2

)
=⇒⇐=. Contradiction, so that implies x is not a local

max. Impossible! Hence ∇f(x) ⊥ to S at x. Then the tangent plane is a hyperplane of dimn−1
and its orthogonal complement is of dim1. ∇g(x) ̸= 0. Hence ∃ λ ∈ R s.t.

∇f(x) = λ∇g(x)

Take g(x) = 0 with y ≈ x⇒
g(y) ≈ g(x)︸︷︷︸

=0

+⟨∇g(x), y − x⟩

Hence y ≈ in level set if ⟨∇g(x), y − x⟩ = 0. So dimn − 1. Since y ∈ Rn with one non-trivial
constraint. So, if x is an extremum of f subject to g = 0 then f cannot increase in any tangent
direction on the constraint surface, so its gradient must be parallel to that of the constraint.
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Remark. The dimension of a vector space V is the number of vectors in a basis of V , that
is, the maximal number of linearly independent vectors in V . It is denoted by dimV .

Lemma 2.7. Suppose that x is a local minmax of f |S . Let TxS be the set of vectors of
S at x. That is v ∈ TxS if ∃ ε > 0 and γ : (−ε, ε) → S that is C1 s.t. γ(0) = x and
γ′(0) = v =⇒ ∀ v ∈ TxS ⇒ ⟨∇f(x), v⟩ = 0.

Proof. Let v ∈ TxS and by definition ∃ γ : (−ε, ε) → S that is C1 s.t. γ(0) = x and
γ′(0) = v ⇒ p : t 7→ f(γ(t)) has a local minmax at 0⇒

p′(0) = 0

where p′(0) = ⟨∇f(γ(0)), γ′(0)⟩ = ⟨∇f(x), v⟩

Definition 2.30 (Rank). Let A ∈ Mm×n(R) The rank of A, denoted rank(A), is the di-
mension of Im(A), that is, the number of linearly independent columns (or rows) of A.

Lemma 2.8. Suppose ∇g(x) ̸= 0 =⇒ TxS is a hyperplane.

Proof. Notice this is true for linear function, hence it is true for C1 functions. Suppose that
∂g
∂xn

(x) ̸= 0. By Theorem 2.22, and since ∇g(x) ̸= 0⇒ ∃ open set V ⊆ Rn s.t. y ∈ V and
U ⊆ Rn open set s.t. (x1, · · · , xn−1) ∈ U and h : U → R s.t.

{g = 0} ∩ V = (y1, · · · , yn−1, h(y1, · · · , yn−1)) = graph(h)

Let’s write Φ : U → Rn with Φ : (y1, · · · , yn−1) 7→ (y1, · · · , yn−1, h(y1, · · · , yn−1)). We
claim TxS = Im(DΦ(x1,··· ,xn−1)) = {DΦ(x1,··· ,xn−1)(v) | v ∈ Rn−1}

⊆. Let v ∈ TxS ⇒ ∃ γ : (−ε, ε) → S that is C1 s.t. γ(0) = x and γ′(0) = v and
∀ t ∈ (−ε, ε)⇒ γ(t) ∈ V . Since γ(t) ∈ S ∩ V = graph(h) = Φ(U)⇒ ∃ γ̃(t) ∈ U s.t.

γ(t) = (γ̃(t), h(γ̃(t)))

Now since γ is C1 so is γ̃ ⇒ γ(t) = Φ(γ̃(t)) with γ̃ and Φ both C1. By Theorem 2.8 ⇒

γ′(t) = DΦγ̃(t)(γ̃(t))

with t = 0⇒ v = DΦ(x1,··· ,xn−1)(γ̃
′(0)) ∈ Im(DΦ(x1,··· ,xn−1))

⊇. Let w ∈ Im(DΦ(x1,··· ,xn−1))⇒ ∃w ∈ Rn−1 s.t. v = DΦ(x1,··· ,xn−1)(w). Let γ̃(t) = x̃+tw.
Set

γ(t) = (γ̃(t), h(γ̃(t)))

The for ε > 0 small enough ∀ t ∈ (−ε, ε) ⇒ γ̃(t) ∈ U . Hence γ(t) ∈ S ∩ V and ∀ t ∈
(−ε, ε)⇒ γ(t) = Φ(γ̃(t)). Then by Theorem 2.8 ⇒ γ′(0) = DΦ(x1,··· ,xn−1)(γ̃

′(0) = w) = v.
Hence v ∈ TxS by definition. Thus TxS = Im(DΦ(x1,··· ,xn−1)) is a vector space

JΦ(x1,··· ,xn−1) =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
∂h
∂y1

∂h
∂y2

· · · ∂h
∂yn−1

 (x1, · · · , xn−1)

⇒ Φ(y1, · · · , yn−1) = (y1, · · · , yn−1, h(y1, · · · , yn−1)). Now since DΦ(x1,··· ,xn−1) : Rn−1 →
Rn the rank is n− 1, since the column vectors are linearly independent. Hence dimTxS =
n− 1. This proves Lemma 2.8.
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Theorem 2.23 (Lagrange). Let f, g : Rn → R be C1. Let x be a local minmax of f |S with
S = {g = 0}. Suppose ∇g(x) ̸= 0 =⇒ ∃ λ ∈ R s.t.

∇f(x) = λ∇g(x)

Proof. Notice that dim(TxS)
⊥ = n− dimTxS = n− (n− 1) = 1. So

A⊥ = {v | ∀ a ∈ A⇒ ⟨v, a⟩ = 0}

And ∇g(x) ∈ (TxS)
⊥ the gradient orthogonal to the level set sine ∇g(x) ̸= 0. So (∇g(x))

is a basis of (TxS)
⊥ ⇒ by Lemma 2.8 =⇒ ∇f(x) ∈ (TxS)

⊥. Hence ∇f(x) = λ∇g(x) for
some λ ∈ R. This proves Theorem 2.23.

Example 2.14. f(x, y) = x2 − y2. Optimize on S = {(x, y) | g(x, y) = x2 − y2 − 1 = 0}

Proof. Let (x, y) be a local minmax on f |S . So f, g are C1 ⇒ ∇g(x, y) = (2x, 2y) ̸= 0 since
x2 − y2 = 1. By Theorem 2.23 ∃ λ ∈ R s.t.

∇f(x, y) = λ∇g(x, y)⇒ (2x,−2y) = λ(2x, 2y)

Notice x = λx ⇒ x(λ − 1) = 0 ⇒ x = 0 or λ = 1. If x = 0 ⇒ y ± 1 so (0, 1) and (0,−1)
are candidates. If λ = 1 ⇒ −2y = 2y ⇒ y = 0 so x = ±1 and (−1, 0) and (1, 0) are also
candidates. Since f is C0 ⇒ S is compact. Hence f |S is bounded and attains both min
and max.

f(±1, 0) = 1︸ ︷︷ ︸
global maxima of f |S

and f(0,±1) = 1︸ ︷︷ ︸
global minima of f |S

This solves the exercise.

Theorem 2.24. Let S = {x ∈ Rn | ∥x∥ = 1} be the unit sphere, and let f : Rn → R
be differentiable. Suppose that the restriction of f to S is constant =⇒ ∃ x0 ∈ Rn with
∥x0∥ < 1 s.t. ∇f(x0) = 0

Proof. Define g(x) = ∥x∥2 − 1. Then S = {x | g(x) = 0} and ∇g(x) = 2x. Since f is
constant on S ∃ c s.t. ∀ x ∈⇒ Sf(x) = c. Hence each x ∈ S is an extremum of f |S . By
Theorem 2.23 ∀ x ∈ S ∃ λx ∈ R s.t.

∇f(x) = λx∇g(x) = 2λxx

Take inner product with x and use ∥x∥ = 1

⟨∇f(x), x⟩ = 2λx

Define φx : (−1, 1)→ R by φx(t) = f(tx). By Theorem 2.8

φ′x(t) = ⟨∇f(tx), x⟩ ⇒ φ′x(1) = ⟨∇f(x), x⟩ = 2λx

But φx is constant at t = 1 (since f is constant on S) ⇒ φ′x(1) = 0. Thus λx = 0 and
therefore

∀ x ∈ S ⇒ ∇f(x) = 0

Since ∀x ∈ S ⇒ ∇f(x) = 0, define F (x) = x−∇f(x). Then F (x) = x on S, so F maps the
closed unit ball B = {x | ∥x∥ ⩽ 1} into itself. By Theorem 2.19, ∃ x0 ∈ B s.t. F (x0) = x0.
Hence ∇f(x0) = 0. If ∥x0∥ = 1⇒ x0 ∈ S, otherwise ∥x0∥ < 1. Either way, x0 exists.

Remark. f(a(t), b(t)) = γ(t)⇒ γ′(t) = a′(t)∂f∂x (a(t), b(t))+b′(t)∂f∂ (a(t), b(t)) (Theorem 2.8)
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Definition 2.31. Let T : V → W be a linear map between vector spaces. The kernel of T
is the set of all vectors in V that are mapped to the zero vector in W , that is

ker(T ) = {v ∈ V | T (v) = 0}

Theorem 2.25 (Lagrange). Let f : Rn → R be C1 and g1, · · · , gm : Rn → R also C1 with
m ⩽ n . Set S = {g1 = 0, · · · , gm = 0}. Let x be a local minmax of f |S . Suppose that
∇g1(x), · · · ∇gm(x) are linearly independent =⇒

∇f(x) = λ1∇g1(x) + λ2∇g2(x) + · · ·+ λm∇gm(x)

for some λ1, λ2, · · · , λm ∈ R
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Chapter 3

Measure Theory

3.1 Preliminaries

Intuition. There are several motivations for this. One of those is we want to integrate functions
that are not smooth i.e. functions where we cannot integrate under Riemann integral.

1Q =

{
1 if x ∈ Q
0 if x ∈ R \Q

is an example of such a function: it is not Riemann integrable on [0, 1]. Another motivation is
to build a theory closed under limit⇒ ∀n ∈ N we have fn integrable and fn → f . For Riemann
integral f is not integrable. For Lebesgue integral it is. This is what we will construct. We are
also interested in constructing a notion of volume of A ⊆ Rd. For R2 we have area, and for R
we have length. Finally, another motivation is taking a point at random between 0 and 1. That
is, constructing a probability measure on [0, 1] i.e.

P(X ∈ A) = |A|

where X is a random point. There exists no such thing, a probability measure s.t. we can
compute ∀A ⊆ [0, 1]⇒ P(X ∈ A). The set of A s.t. we can compute P(X ∈ A) is called the set
of measurable sets of [0, 1]. The Lebesgue measure is defined on A ⊆ P([0, 1]) called Borelian.

Definition 3.1 (Rectangle). A closed rectangle in Rd is a set of the form

[a1, b1]× [a2, b2]× · · · [ad, bd]

with a1 ⩽ b1 · · · ad ⩽ bd. An open rectangle in Rd is a set of the form

(a1, b1)× (a2, b2)× · · · (ad, bd)

with a1 < b1 · · · ad < bd.

Corollary (Cube). A cube in Rd is a rectangle s.t. b1 − a1 = · · · = bd − ad

Definition 3.2 (Volume). We define the volume of an open or closed rectangle R to be

|R| =
n∏

i=1

(bi − ai)
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Definition 3.3 (Open Set). A set O ⊆ Rd is open is ∀ x ∈ O ∃ ε ∈ R+ s.t.

B(x, ε) ⊆ O

Intuition. For d = 1⇒ (a, b) is open. Any union of open sets is open i.e. (−∞, a) ∪ (b,∞)

Remark. I is countable if |I| <∞ or if I is in bijection with N

Theorem 3.1. Let O ⊆ R be open ⇒ O can be decomposed into a countable union of open
(non-empty) disjoint intervals. Moreover, this decomposition is unique.
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